BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 21141910)

  • 1. Tuning the synthesis of ternary lead chalcogenide quantum dots by balancing precursor reactivity.
    Smith DK; Luther JM; Semonin OE; Nozik AJ; Beard MC
    ACS Nano; 2011 Jan; 5(1):183-90. PubMed ID: 21141910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Infrared colloidal lead chalcogenide nanocrystals: synthesis, properties, and photovoltaic applications.
    Fu H; Tsang SW
    Nanoscale; 2012 Apr; 4(7):2187-201. PubMed ID: 22382898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled synthesis of compositionally tunable ternary PbSe(x)S(1-x) as well as binary PbSe and PbS nanowires.
    Onicha AC; Petchsang N; Kosel TH; Kuno M
    ACS Nano; 2012 Mar; 6(3):2833-43. PubMed ID: 22339621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryogenic spectroscopy of ultra-low density colloidal lead chalcogenide quantum dots on chip-scale optical cavities towards single quantum dot near-infrared cavity QED.
    Bose R; Gao J; McMillan JF; Williams AD; Wong CW
    Opt Express; 2009 Dec; 17(25):22474-83. PubMed ID: 20052171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of Cysteine-Capped Zn(x)Cd(1)(-)(x)Se alloyed quantum dots emitting in the blue-green spectral range.
    Liu FC; Cheng TL; Shen CC; Tseng WL; Chiang MY
    Langmuir; 2008 Mar; 24(5):2162-7. PubMed ID: 18205420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of highly fluorescent glutathione-capped Zn(x)Hg(1-x)Se quantum dot and its application for sensing copper ion.
    Liu FC; Chen YM; Lin JH; Tseng WL
    J Colloid Interface Sci; 2009 Sep; 337(2):414-9. PubMed ID: 19524936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular control of the nanoscale: effect of phosphine-chalcogenide reactivity on CdS-CdSe nanocrystal composition and morphology.
    Ruberu TP; Albright HR; Callis B; Ward B; Cisneros J; Fan HJ; Vela J
    ACS Nano; 2012 Jun; 6(6):5348-59. PubMed ID: 22519805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microwave-assisted aqueous synthesis of new quaternary-alloyed CdSeTeS quantum dots; and their bioapplications in targeted imaging of cancer cells.
    Yang F; Xu Z; Wang J; Zan F; Dong C; Ren J
    Luminescence; 2013; 28(3):392-400. PubMed ID: 22696455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size and composition dependent multiple exciton generation efficiency in PbS, PbSe, and PbS(x)Se(1-x) alloyed quantum dots.
    Midgett AG; Luther JM; Stewart JT; Smith DK; Padilha LA; Klimov VI; Nozik AJ; Beard MC
    Nano Lett; 2013 Jul; 13(7):3078-85. PubMed ID: 23750998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-temperature noninjection approach to homogeneously-alloyed PbSe(x)S(1-x) colloidal nanocrystals for photovoltaic applications.
    Yu K; Ouyang J; Zhang Y; Tung HT; Lin S; Nagelkerke RA; Kingston D; Wu X; Leek DM; Wilkinson D; Li C; Chen IG; Tao Y
    ACS Appl Mater Interfaces; 2011 May; 3(5):1511-20. PubMed ID: 21476520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scanning tunneling spectroscopy of individual PbSe quantum dots and molecular aggregates stabilized in an inert nanocrystal matrix.
    Overgaag K; Liljeroth P; Grandidier B; Vanmaekelbergh D
    ACS Nano; 2008 Mar; 2(3):600-6. PubMed ID: 19206586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymer-assisted preparation of nanoscale films of thermoelectric PbSe and PbTe and of lead chalcogenide-polymer composite films.
    Erk C; Berger A; Wendorff JH; Schlecht S
    Dalton Trans; 2010 Dec; 39(46):11248-54. PubMed ID: 20967344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Langmuir-Blodgett monolayers of colloidal lead chalcogenide quantum dots: morphology and photoluminescence.
    Justo Y; Moreels I; Lambert K; Hens Z
    Nanotechnology; 2010 Jul; 21(29):295606. PubMed ID: 20601759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size-tunable, bright, and stable PbS quantum dots: a surface chemistry study.
    Moreels I; Justo Y; De Geyter B; Haustraete K; Martins JC; Hens Z
    ACS Nano; 2011 Mar; 5(3):2004-12. PubMed ID: 21355621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Infrared emitting and photoconducting colloidal silver chalcogenide nanocrystal quantum dots from a silylamide-promoted synthesis.
    Yarema M; Pichler S; Sytnyk M; Seyrkammer R; Lechner RT; Fritz-Popovski G; Jarzab D; Szendrei K; Resel R; Korovyanko O; Loi MA; Paris O; Hesser G; Heiss W
    ACS Nano; 2011 May; 5(5):3758-65. PubMed ID: 21500803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Air-stable PbSe/PbS and PbSe/PbSexS1-x core-shell nanocrystal quantum dots and their applications.
    Lifshitz E; Brumer M; Kigel A; Sashchiuk A; Bashouti M; Sirota M; Galun E; Burshtein Z; Le Quang AQ; Ledoux-Rak I; Zyss J
    J Phys Chem B; 2006 Dec; 110(50):25356-65. PubMed ID: 17165982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of CuInTe2 and CuInTe(2-x)Se(x) ternary gradient quantum dots and their application to solar cells.
    Kim S; Kang M; Kim S; Heo JH; Noh JH; Im SH; Seok SI; Kim SW
    ACS Nano; 2013 Jun; 7(6):4756-63. PubMed ID: 23656273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrafast exciton fine structure relaxation dynamics in lead chalcogenide nanocrystals.
    Johnson JC; Gerth KA; Song Q; Murphy JE; Nozik AJ; Scholes GD
    Nano Lett; 2008 May; 8(5):1374-81. PubMed ID: 18376866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffusion-controlled synthesis of PbS and PbSe quantum dots with in situ halide passivation for quantum dot solar cells.
    Zhang J; Gao J; Miller EM; Luther JM; Beard MC
    ACS Nano; 2014 Jan; 8(1):614-22. PubMed ID: 24341705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligand-dependent particle size control of PbSe quantum dots.
    Baek IC; Seok SI; Pramanik NC; Jana S; Lim MA; Ahn BY; Lee CJ; Jeong YJ
    J Colloid Interface Sci; 2007 Jun; 310(1):163-6. PubMed ID: 17331530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.