BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 21141912)

  • 1. Update 1 of: Tunneling and dynamics in enzymatic hydride transfer.
    Nagel ZD; Klinman JP
    Chem Rev; 2010 Dec; 110(12):PR41-67. PubMed ID: 21141912
    [No Abstract]   [Full Text] [Related]  

  • 2. Convergence of theory and experiment on the role of preorganization, quantum tunneling and enzyme motions into flavoenzyme-catalyzed hydride transfer.
    Delgado M; Görlich S; Longbotham JE; Scrutton NS; Hay S; Moliner V; Tuñón I
    ACS Catal; 2019 May; 7(5):3190-3198. PubMed ID: 31157122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep tunneling dominates the biologically important hydride transfer reaction from NADH to FMN in morphinone reductase.
    Pang J; Hay S; Scrutton NS; Sutcliffe MJ
    J Am Chem Soc; 2008 Jun; 130(22):7092-7. PubMed ID: 18470990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of the donor-acceptor distance and dynamics on hydride tunneling in the dihydrofolate reductase catalyzed reaction.
    Stojković V; Perissinotti LL; Willmer D; Benkovic SJ; Kohen A
    J Am Chem Soc; 2012 Jan; 134(3):1738-45. PubMed ID: 22171795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Another Look at the Mechanisms of Hydride Transfer Enzymes with Quantum and Classical Transition Path Sampling.
    Dzierlenga MW; Antoniou D; Schwartz SD
    J Phys Chem Lett; 2015 Apr; 6(7):1177-81. PubMed ID: 26262969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An internal equilibrium preorganizes the enzyme-substrate complex for hydride tunneling in choline oxidase.
    Fan F; Gadda G
    Biochemistry; 2007 May; 46(21):6402-8. PubMed ID: 17472346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydride transfer reaction catalyzed by hyperthermophilic dihydrofolate reductase is dominated by quantum mechanical tunneling and is promoted by both inter- and intramonomeric correlated motions.
    Pang J; Pu J; Gao J; Truhlar DG; Allemann RK
    J Am Chem Soc; 2006 Jun; 128(24):8015-23. PubMed ID: 16771517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A reevaluation of the origin of the rate acceleration for enzyme-catalyzed hydride transfer.
    Reyes AC; Amyes TL; Richard JP
    Org Biomol Chem; 2017 Oct; 15(42):8856-8866. PubMed ID: 28956050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunneling and dynamics in enzymatic hydride transfer.
    Nagel ZD; Klinman JP
    Chem Rev; 2006 Aug; 106(8):3095-118. PubMed ID: 16895320
    [No Abstract]   [Full Text] [Related]  

  • 10. Steric effects on the primary isotope dependence of secondary kinetic isotope effects in hydride transfer reactions in solution: caused by the isotopically different tunneling ready state conformations?
    Maharjan B; Raghibi Boroujeni M; Lefton J; White OR; Razzaghi M; Hammann BA; Derakhshani-Molayousefi M; Eilers JE; Lu Y
    J Am Chem Soc; 2015 May; 137(20):6653-61. PubMed ID: 25941865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. H-tunneling in the multiple H-transfers of the catalytic cycle of morphinone reductase and in the reductive half-reaction of the homologous pentaerythritol tetranitrate reductase.
    Basran J; Harris RJ; Sutcliffe MJ; Scrutton NS
    J Biol Chem; 2003 Nov; 278(45):43973-82. PubMed ID: 12941965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydride transfer catalyzed by xylose isomerase: mechanism and quantum effects.
    Garcia-Viloca M; Alhambra C; Truhlar DG; Gao J
    J Comput Chem; 2003 Jan; 24(2):177-90. PubMed ID: 12497598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Primary semiclassical kinetic hydrogen isotope effects in identity carbon-to-carbon proton- and hydride-transfer reactions, an ab initio and DFT computational study.
    Gronert S; Keeffe JR
    J Org Chem; 2006 Aug; 71(16):5959-68. PubMed ID: 16872178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Path Sampling Methods for Enzymatic Quantum Particle Transfer Reactions.
    Dzierlenga MW; Varga MJ; Schwartz SD
    Methods Enzymol; 2016; 578():21-43. PubMed ID: 27497161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear quantum tunneling in the light-activated enzyme protochlorophyllide oxidoreductase.
    Heyes DJ; Sakuma M; de Visser SP; Scrutton NS
    J Biol Chem; 2009 Feb; 284(6):3762-7. PubMed ID: 19073603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydride Transfer Mechanism of Enzymatic Sugar Nucleotide C2 Epimerization Probed with a Loose-Fit CDP-Glucose Substrate.
    Rapp C; Nidetzky B
    ACS Catal; 2022 Jun; 12(12):6816-6830. PubMed ID: 35747200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of coupled motions in Escherichia coli and Bacillus subtilis dihydrofolate reductase.
    Watney JB; Hammes-Schiffer S
    J Phys Chem B; 2006 May; 110(20):10130-8. PubMed ID: 16706474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Catalytic Cycle of the Antioxidant and Cancer-Associated Human NQO1 Enzyme: Hydride Transfer, Conformational Dynamics and Functional Cooperativity.
    Anoz-Carbonell E; Timson DJ; Pey AL; Medina M
    Antioxidants (Basel); 2020 Aug; 9(9):. PubMed ID: 32825392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Promoting motions in enzyme catalysis probed by pressure studies of kinetic isotope effects.
    Hay S; Sutcliffe MJ; Scrutton NS
    Proc Natl Acad Sci U S A; 2007 Jan; 104(2):507-12. PubMed ID: 17202258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A remote mutation affects the hydride transfer by disrupting concerted protein motions in thymidylate synthase.
    Wang Z; Abeysinghe T; Finer-Moore JS; Stroud RM; Kohen A
    J Am Chem Soc; 2012 Oct; 134(42):17722-30. PubMed ID: 23034004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.