BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 21141957)

  • 21. The effect of pyrophosphate, tripolyphosphate and ATP on the rate of the Fenton reaction.
    Rachmilovich-Calis S; Masarwa A; Meyerstein N; Meyerstein D
    J Inorg Biochem; 2011 May; 105(5):669-74. PubMed ID: 21450270
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fenton activity and cytotoxicity studies of iron-loaded carbon particles.
    Peebles B; Nagy A; Waldman WJ; Dutta PK
    Environ Sci Technol; 2010 Sep; 44(17):6887-92. PubMed ID: 20695492
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Iron oxychloride (FeOCl): an efficient Fenton-like catalyst for producing hydroxyl radicals in degradation of organic contaminants.
    Yang XJ; Xu XM; Xu J; Han YF
    J Am Chem Soc; 2013 Oct; 135(43):16058-61. PubMed ID: 24124647
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selectivity of hydrogen peroxide decomposition towards hydroxyl radicals in catalytic wet peroxide oxidation (CWPO) over Fe/AC catalysts.
    Rey A; Bahamonde A; Casas JA; Rodríguez JJ
    Water Sci Technol; 2010; 61(11):2769-78. PubMed ID: 20489249
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigation of the generation of hydroxyl radicals and their oxidative role in the presence of heterogeneous copper catalysts.
    Kim JK; Metcalfe IS
    Chemosphere; 2007 Oct; 69(5):689-96. PubMed ID: 17604820
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles.
    He W; Zhou YT; Wamer WG; Boudreau MD; Yin JJ
    Biomaterials; 2012 Oct; 33(30):7547-55. PubMed ID: 22809647
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The line asymmetry of electron spin resonance spectra as a tool to determine the cis:trans ratio for spin-trapping adducts of chiral pyrrolines N-oxides: the mechanism of formation of hydroxyl radical adducts of EMPO, DEPMPO, and DIPPMPO in the ischemic-reperfused rat liver.
    Culcasi M; Rockenbauer A; Mercier A; Clément JL; Pietri S
    Free Radic Biol Med; 2006 May; 40(9):1524-38. PubMed ID: 16632113
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Free oxygen radiacals and kidney diseases--part I].
    Sakac V; Sakac M
    Med Pregl; 2000; 53(9-10):463-74. PubMed ID: 11320727
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Relevance of the capacity of phosphorylated fructose to scavenge the hydroxyl radical.
    Spasojević I; Mojović M; Blagojević D; Spasić SD; Jones DR; Nikolić-Kokić A; Spasić MB
    Carbohydr Res; 2009 Jan; 344(1):80-4. PubMed ID: 18947823
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrochemical sensing the DNA damage in situ induced by a cathodic process based on Fe@Fe(2)O(3) core-shell nanonecklace and Au nanoparticles mimicking metal toxicity pathways in vivo.
    Wang X; Yang T; Jiao K
    Biosens Bioelectron; 2009 Dec; 25(4):668-73. PubMed ID: 19734034
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles.
    Wang C; Baer DR; Amonette JE; Engelhard MH; Antony J; Qiang Y
    J Am Chem Soc; 2009 Jul; 131(25):8824-32. PubMed ID: 19496564
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Removal of proteinaceous soils using hydroxyl radicals generated by the electrolysis of hydrogen peroxide.
    Imamura K; Tada Y; Tanaka H; Sakiyama T; Nakanishi K
    J Colloid Interface Sci; 2002 Jun; 250(2):409-14. PubMed ID: 16290678
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Toxicity of iron oxide nanoparticles: Size and coating effects.
    Abakumov MA; Semkina AS; Skorikov AS; Vishnevskiy DA; Ivanova AV; Mironova E; Davydova GA; Majouga AG; Chekhonin VP
    J Biochem Mol Toxicol; 2018 Dec; 32(12):e22225. PubMed ID: 30290022
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fe-Impregnated Mineral Colloids for Peroxide Activation: Effects of Mineral Substrate and Fe Precursor.
    Li Y; Machala L; Yan W
    Environ Sci Technol; 2016 Feb; 50(3):1190-9. PubMed ID: 26713453
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intrinsic catalytic activity of Au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging.
    He W; Zhou YT; Wamer WG; Hu X; Wu X; Zheng Z; Boudreau MD; Yin JJ
    Biomaterials; 2013 Jan; 34(3):765-73. PubMed ID: 23103160
    [TBL] [Abstract][Full Text] [Related]  

  • 36. How far can hydroxyl radicals travel? An electrochemical study based on a DNA mediated electron transfer process.
    Guo Q; Yue Q; Zhao J; Wang L; Wang H; Wei X; Liu J; Jia J
    Chem Commun (Camb); 2011 Nov; 47(43):11906-8. PubMed ID: 21963764
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Superoxide mediated production of hydroxyl radicals by magnetite nanoparticles: demonstration in the degradation of 2-chlorobiphenyl.
    Fang GD; Zhou DM; Dionysiou DD
    J Hazard Mater; 2013 Apr; 250-251():68-75. PubMed ID: 23434481
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of the catalytic decomposition of H2O2 through use of organo-metallic complexes--a potential link to the luminol presumptive blood test.
    Soderquist TJ; Chesniak OM; Witt MR; Paramo A; Keeling VA; Keleher JJ
    Forensic Sci Int; 2012 Jun; 219(1-3):101-5. PubMed ID: 22227152
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Make conjugation simple: a facile approach to integrated nanostructures.
    Xu Y; Palchoudhury S; Qin Y; Macher T; Bao Y
    Langmuir; 2012 Jun; 28(23):8767-72. PubMed ID: 22607168
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stabilization of magnetic iron oxide nanoparticles in biological media by fetal bovine serum (FBS).
    Wiogo HT; Lim M; Bulmus V; Yun J; Amal R
    Langmuir; 2011 Jan; 27(2):843-50. PubMed ID: 21171579
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.