These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 21141978)
1. Making contacts to n-type organic transistors using carbon nanotube arrays. Cicoira F; Aguirre CM; Martel R ACS Nano; 2011 Jan; 5(1):283-90. PubMed ID: 21141978 [TBL] [Abstract][Full Text] [Related]
2. Improved injection in n-type organic transistors with conjugated polyelectrolytes. Seo JH; Gutacker A; Walker B; Cho S; Garcia A; Yang R; Nguyen TQ; Heeger AJ; Bazan GC J Am Chem Soc; 2009 Dec; 131(51):18220-1. PubMed ID: 19968301 [TBL] [Abstract][Full Text] [Related]
3. Utilizing carbon nanotube electrodes to improve charge injection and transport in bis(trifluoromethyl)-dimethyl-rubrene ambipolar single crystal transistors. Xie W; Prabhumirashi PL; Nakayama Y; McGarry KA; Geier ML; Uragami Y; Mase K; Douglas CJ; Ishii H; Hersam MC; Frisbie CD ACS Nano; 2013 Nov; 7(11):10245-56. PubMed ID: 24175573 [TBL] [Abstract][Full Text] [Related]
4. Bilayer ambipolar organic thin-film transistors and inverters prepared by the contact-film-transfer method. Wei Q; Tajima K; Hashimoto K ACS Appl Mater Interfaces; 2009 Sep; 1(9):1865-8. PubMed ID: 20355807 [TBL] [Abstract][Full Text] [Related]
5. High performance semiconducting enriched carbon nanotube thin film transistors using metallic carbon nanotubes as electrodes. Sarker BK; Kang N; Khondaker SI Nanoscale; 2014 May; 6(9):4896-902. PubMed ID: 24671657 [TBL] [Abstract][Full Text] [Related]
6. Titanyl phthalocyanine ambipolar thin film transistors making use of carbon nanotube electrodes. Coppedè N; Valitova I; Mahvash F; Tarabella G; Ranzieri P; Iannotta S; Santato C; Martel R; Cicoira F Nanotechnology; 2014 Dec; 25(48):485703. PubMed ID: 25388936 [TBL] [Abstract][Full Text] [Related]
7. Nanowelding of carbon nanotube-metal contacts: an effective way to control the Schottky barrier and performance of carbon nanotube based field effect transistors. Nurbawono A; Zhang A; Cai Y; Wu Y; Feng YP; Zhang C J Chem Phys; 2012 May; 136(17):174704. PubMed ID: 22583262 [TBL] [Abstract][Full Text] [Related]
8. Absorptive carbon nanotube electrodes: consequences of optical interference loss in thin film solar cells. Tait JG; De Volder MF; Cheyns D; Heremans P; Rand BP Nanoscale; 2015 Apr; 7(16):7259-66. PubMed ID: 25811493 [TBL] [Abstract][Full Text] [Related]
9. Vertically aligned carbon-nanotube arrays showing Schottky behavior at room temperature. Jung SH; Jeong SH; Kim SU; Hwang SK; Lee PS; Lee KH; Ko JH; Bae E; Kang D; Park W; Oh H; Kim JJ; Kim H; Park CG Small; 2005 May; 1(5):553-9. PubMed ID: 17193485 [TBL] [Abstract][Full Text] [Related]
10. Facile fabrication of efficient organic CMOS circuits. Dzwilewski A; Matyba P; Edman L J Phys Chem B; 2010 Jan; 114(1):135-40. PubMed ID: 20055524 [TBL] [Abstract][Full Text] [Related]
11. Anomalous Schottky barriers and contact band-to-band tunneling in carbon nanotube transistors. Perello DJ; Chulim S; Chae SJ; Lee I; Kim MJ; Lee YH; Yun M ACS Nano; 2010 Jun; 4(6):3103-8. PubMed ID: 20509663 [TBL] [Abstract][Full Text] [Related]
12. DC modeling and the source of flicker noise in passivated carbon nanotube transistors. Kim S; Kim S; Janes DB; Mohammadi S; Back J; Shim M Nanotechnology; 2010 Sep; 21(38):385203. PubMed ID: 20798468 [TBL] [Abstract][Full Text] [Related]
13. Charge injection engineering of ambipolar field-effect transistors for high-performance organic complementary circuits. Baeg KJ; Kim J; Khim D; Caironi M; Kim DY; You IK; Quinn JR; Facchetti A; Noh YY ACS Appl Mater Interfaces; 2011 Aug; 3(8):3205-14. PubMed ID: 21805991 [TBL] [Abstract][Full Text] [Related]
14. Use of a 1H-benzoimidazole derivative as an n-type dopant and to enable air-stable solution-processed n-channel organic thin-film transistors. Wei P; Oh JH; Dong G; Bao Z J Am Chem Soc; 2010 Jul; 132(26):8852-3. PubMed ID: 20552967 [TBL] [Abstract][Full Text] [Related]
15. High-performance air-stable n-type carbon nanotube transistors with erbium contacts. Shahrjerdi D; Franklin AD; Oida S; Ott JA; Tulevski GS; Haensch W ACS Nano; 2013 Sep; 7(9):8303-8. PubMed ID: 24006886 [TBL] [Abstract][Full Text] [Related]
16. Unipolar p-type single-walled carbon nanotube field-effect transistors using TTF-TCNQ as the contact material. Xian X; Yan K; Zhou W; Jiao L; Wu Z; Liu Z Nanotechnology; 2009 Dec; 20(50):505204. PubMed ID: 19923654 [TBL] [Abstract][Full Text] [Related]
17. Electroluminescence from electrolyte-gated carbon nanotube field-effect transistors. Zaumseil J; Ho X; Guest JR; Wiederrecht GP; Rogers JA ACS Nano; 2009 Aug; 3(8):2225-34. PubMed ID: 19634895 [TBL] [Abstract][Full Text] [Related]
18. Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays. Engel M; Small JP; Steiner M; Freitag M; Green AA; Hersam MC; Avouris P ACS Nano; 2008 Dec; 2(12):2445-52. PubMed ID: 19206278 [TBL] [Abstract][Full Text] [Related]
19. Design, synthesis, and characterization of ladder-type molecules and polymers. Air-stable, solution-processable n-channel and ambipolar semiconductors for thin-film transistors via experiment and theory. Usta H; Risko C; Wang Z; Huang H; Deliomeroglu MK; Zhukhovitskiy A; Facchetti A; Marks TJ J Am Chem Soc; 2009 Apr; 131(15):5586-608. PubMed ID: 19331320 [TBL] [Abstract][Full Text] [Related]
20. Printed, sub-3V digital circuits on plastic from aqueous carbon nanotube inks. Ha M; Xia Y; Green AA; Zhang W; Renn MJ; Kim CH; Hersam MC; Frisbie CD ACS Nano; 2010 Aug; 4(8):4388-95. PubMed ID: 20583780 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]