These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 21142050)
1. Quest for spatially correlated fluctuations in the FMO light-harvesting complex. Olbrich C; Strümpfer J; Schulten K; Kleinekathöfer U J Phys Chem B; 2011 Feb; 115(4):758-64. PubMed ID: 21142050 [TBL] [Abstract][Full Text] [Related]
2. Atomistic study of the long-lived quantum coherences in the Fenna-Matthews-Olson complex. Shim S; Rebentrost P; Valleau S; Aspuru-Guzik A Biophys J; 2012 Feb; 102(3):649-60. PubMed ID: 22325289 [TBL] [Abstract][Full Text] [Related]
3. Normal mode analysis of the spectral density of the Fenna-Matthews-Olson light-harvesting protein: how the protein dissipates the excess energy of excitons. Renger T; Klinger A; Steinecker F; Schmidt am Busch M; Numata J; Müh F J Phys Chem B; 2012 Dec; 116(50):14565-80. PubMed ID: 23163520 [TBL] [Abstract][Full Text] [Related]
4. From atomistic modeling to excitation transfer and two-dimensional spectra of the FMO light-harvesting complex. Olbrich C; Jansen TL; Liebers J; Aghtar M; Strümpfer J; Schulten K; Knoester J; Kleinekathöfer U J Phys Chem B; 2011 Jul; 115(26):8609-21. PubMed ID: 21635010 [TBL] [Abstract][Full Text] [Related]
5. Origin of long-lived coherences in light-harvesting complexes. Christensson N; Kauffmann HF; Pullerits T; Mančal T J Phys Chem B; 2012 Jun; 116(25):7449-54. PubMed ID: 22642682 [TBL] [Abstract][Full Text] [Related]
6. On uncorrelated inter-monomer Förster energy transfer in Fenna-Matthews-Olson complexes. Kell A; Khmelnitskiy AY; Reinot T; Jankowiak R J R Soc Interface; 2019 Feb; 16(151):20180882. PubMed ID: 30958204 [TBL] [Abstract][Full Text] [Related]
7. Open quantum system parameters for light harvesting complexes from molecular dynamics. Wang X; Ritschel G; Wüster S; Eisfeld A Phys Chem Chem Phys; 2015 Oct; 17(38):25629-41. PubMed ID: 26372495 [TBL] [Abstract][Full Text] [Related]
8. Predictive First-Principles Modeling of a Photosynthetic Antenna Protein: The Fenna-Matthews-Olson Complex. Kim Y; Morozov D; Stadnytskyi V; Savikhin S; Slipchenko LV J Phys Chem Lett; 2020 Mar; 11(5):1636-1643. PubMed ID: 32013435 [TBL] [Abstract][Full Text] [Related]
9. The Fenna-Matthews-Olson protein revisited: a fully polarizable (TD)DFT/MM description. Jurinovich S; Curutchet C; Mennucci B Chemphyschem; 2014 Oct; 15(15):3194-204. PubMed ID: 25080315 [TBL] [Abstract][Full Text] [Related]
10. Probing the excitonic landscape of the Chlorobaculum tepidum Fenna-Matthews-Olson (FMO) complex: a mutagenesis approach. Saer RG; Stadnytskyi V; Magdaong NC; Goodson C; Savikhin S; Blankenship RE Biochim Biophys Acta Bioenerg; 2017 Apr; 1858(4):288-296. PubMed ID: 28159567 [TBL] [Abstract][Full Text] [Related]
11. QM/MM modeling of environmental effects on electronic transitions of the FMO complex. Gao J; Shi WJ; Ye J; Wang X; Hirao H; Zhao Y J Phys Chem B; 2013 Apr; 117(13):3488-95. PubMed ID: 23480507 [TBL] [Abstract][Full Text] [Related]
12. Site-Dependent Fluctuations Optimize Electronic Energy Transfer in the Fenna-Matthews-Olson Protein. Saito S; Higashi M; Fleming GR J Phys Chem B; 2019 Nov; 123(46):9762-9772. PubMed ID: 31657928 [TBL] [Abstract][Full Text] [Related]
13. Perturbation of bacteriochlorophyll molecules in Fenna-Matthews-Olson protein complexes through mutagenesis of cysteine residues. Saer R; Orf GS; Lu X; Zhang H; Cuneo MJ; Myles DAA; Blankenship RE Biochim Biophys Acta; 2016 Sep; 1857(9):1455-1463. PubMed ID: 27114180 [TBL] [Abstract][Full Text] [Related]
14. Influence of environment induced correlated fluctuations in electronic coupling on coherent excitation energy transfer dynamics in model photosynthetic systems. Huo P; Coker DF J Chem Phys; 2012 Mar; 136(11):115102. PubMed ID: 22443796 [TBL] [Abstract][Full Text] [Related]
15. Two-dimensional spectroscopy can distinguish between decoherence and dephasing of zero-quantum coherences. Fidler AF; Harel E; Long PD; Engel GS J Phys Chem A; 2012 Jan; 116(1):282-9. PubMed ID: 22191993 [TBL] [Abstract][Full Text] [Related]
16. Impact of Electronic Fluctuations and Their Description on the Exciton Dynamics in the Light-Harvesting Complex PE545. Aghtar M; Kleinekathöfer U; Curutchet C; Mennucci B J Phys Chem B; 2017 Feb; 121(6):1330-1339. PubMed ID: 28112938 [TBL] [Abstract][Full Text] [Related]
17. Quantitative Evaluation of Site Energies and Their Fluctuations of Pigments in the Fenna-Matthews-Olson Complex with an Efficient Method for Generating a Potential Energy Surface. Higashi M; Saito S J Chem Theory Comput; 2016 Aug; 12(8):4128-37. PubMed ID: 27385191 [TBL] [Abstract][Full Text] [Related]
18. Different Types of Vibrations Interacting with Electronic Excitations in Phycoerythrin 545 and Fenna-Matthews-Olson Antenna Systems. Aghtar M; Strümpfer J; Olbrich C; Schulten K; Kleinekathöfer U J Phys Chem Lett; 2014 Sep; 5(18):3131-7. PubMed ID: 26276324 [TBL] [Abstract][Full Text] [Related]
19. On destabilization of the Fenna-Matthews-Olson complex of Chlorobaculum tepidum. Kell A; Acharya K; Blankenship RE; Jankowiak R Photosynth Res; 2014 Jun; 120(3):323-9. PubMed ID: 24584903 [TBL] [Abstract][Full Text] [Related]
20. Extracting dynamics of excitonic coherences in congested spectra of photosynthetic light harvesting antenna complexes. Caram JR; Engel GS Faraday Discuss; 2011; 153():93-104; discussion 189-212. PubMed ID: 22452075 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]