These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 21142079)

  • 41. Dissection of the BCR-ABL signaling network using highly specific monobody inhibitors to the SHP2 SH2 domains.
    Sha F; Gencer EB; Georgeon S; Koide A; Yasui N; Koide S; Hantschel O
    Proc Natl Acad Sci U S A; 2013 Sep; 110(37):14924-9. PubMed ID: 23980151
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Molecular properties that influence the oral bioavailability of drug candidates.
    Veber DF; Johnson SR; Cheng HY; Smith BR; Ward KW; Kopple KD
    J Med Chem; 2002 Jun; 45(12):2615-23. PubMed ID: 12036371
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The Rule of Five revisited: applying log D in place of log P in drug-likeness filters.
    Bhal SK; Kassam K; Peirson IG; Pearl GM
    Mol Pharm; 2007; 4(4):556-60. PubMed ID: 17530776
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Is there a difference between leads and drugs? A historical perspective.
    Oprea TI; Davis AM; Teague SJ; Leeson PD
    J Chem Inf Comput Sci; 2001; 41(5):1308-15. PubMed ID: 11604031
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Characteristic physical properties and structural fragments of marketed oral drugs.
    Vieth M; Siegel MG; Higgs RE; Watson IA; Robertson DH; Savin KA; Durst GL; Hipskind PA
    J Med Chem; 2004 Jan; 47(1):224-32. PubMed ID: 14695836
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluation of an integrated in vitro-in silico PBPK (physiologically based pharmacokinetic) model to provide estimates of human bioavailability.
    Cai H; Stoner C; Reddy A; Freiwald S; Smith D; Winters R; Stankovic C; Surendran N
    Int J Pharm; 2006 Feb; 308(1-2):133-9. PubMed ID: 16352407
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Combined 4D-fingerprint and clustering based membrane-interaction QSAR analyses for constructing consensus Caco-2 cell permeation virtual screens.
    Santos-Filho OA; Hopfinger AJ
    J Pharm Sci; 2008 Jan; 97(1):566-83. PubMed ID: 17696143
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Selective inhibitors of the protein tyrosine phosphatase SHP2 block cellular motility and growth of cancer cells in vitro and in vivo.
    Grosskopf S; Eckert C; Arkona C; Radetzki S; Böhm K; Heinemann U; Wolber G; von Kries JP; Birchmeier W; Rademann J
    ChemMedChem; 2015 May; 10(5):815-26. PubMed ID: 25877780
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Recent Advances of SHP2 Inhibitors in Cancer Therapy: Current Development and Clinical Application.
    Yuan X; Bu H; Zhou J; Yang CY; Zhang H
    J Med Chem; 2020 Oct; 63(20):11368-11396. PubMed ID: 32460492
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Technically Extended MultiParameter Optimization (TEMPO): An Advanced Robust Scoring Scheme To Calculate Central Nervous System Druggability and Monitor Lead Optimization.
    Ghose AK; Ott GR; Hudkins RL
    ACS Chem Neurosci; 2017 Jan; 8(1):147-154. PubMed ID: 27741392
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Molecular diversity in the context of leadlikeness: compound properties that enable effective biochemical screening.
    Rishton GM
    Curr Opin Chem Biol; 2008 Jun; 12(3):340-51. PubMed ID: 18328272
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Risk assessment for drug-drug interaction caused by metabolism-based inhibition of CYP3A using automated in vitro assay systems and its application in the early drug discovery process.
    Watanabe A; Nakamura K; Okudaira N; Okazaki O; Sudo K
    Drug Metab Dispos; 2007 Jul; 35(7):1232-8. PubMed ID: 17392390
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Targeting a cryptic allosteric site for selective inhibition of the oncogenic protein tyrosine phosphatase Shp2.
    Chio CM; Lim CS; Bishop AC
    Biochemistry; 2015 Jan; 54(2):497-504. PubMed ID: 25519989
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Simple rules defining the potential of compounds for transdermal delivery or toxicity.
    Magnusson BM; Pugh WJ; Roberts MS
    Pharm Res; 2004 Jun; 21(6):1047-54. PubMed ID: 15212171
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In vitro - in vivo correlation: from theory to applications.
    Emami J
    J Pharm Pharm Sci; 2006; 9(2):169-89. PubMed ID: 16959187
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications.
    Kawabata Y; Wada K; Nakatani M; Yamada S; Onoue S
    Int J Pharm; 2011 Nov; 420(1):1-10. PubMed ID: 21884771
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identification and selection of "privileged fragments" suitable for primary screening.
    Gianti E; Sartori L
    J Chem Inf Model; 2008 Nov; 48(11):2129-39. PubMed ID: 18991373
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Predicting the Drug Clearance Pathway with Structural Descriptors.
    Kaboudi N; Shayanfar A
    Eur J Drug Metab Pharmacokinet; 2022 May; 47(3):363-369. PubMed ID: 35147854
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Allosteric Inhibitors of SHP2 with Therapeutic Potential for Cancer Treatment.
    Xie J; Si X; Gu S; Wang M; Shen J; Li H; Shen J; Li D; Fang Y; Liu C; Zhu J
    J Med Chem; 2017 Dec; 60(24):10205-10219. PubMed ID: 29155585
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High-throughput evaluation of lipophilicity and acidity by new gradient HPLC methods.
    Markuszewski MJ; Wiczling P; Kaliszan R
    Comb Chem High Throughput Screen; 2004 Jun; 7(4):281-9. PubMed ID: 15200377
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.