These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 21142085)

  • 1. Sequence length dictates repeated CAG folding in three-way junctions.
    Degtyareva NN; Barber CA; Reddish MJ; Petty JT
    Biochemistry; 2011 Feb; 50(4):458-65. PubMed ID: 21142085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Context dependence of trinucleotide repeat structures.
    Degtyareva NN; Barber CA; Sengupta B; Petty JT
    Biochemistry; 2010 Apr; 49(14):3024-30. PubMed ID: 20205464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-B conformations of CAG repeats using 2-aminopurine.
    Degtyareva NN; Petty JT
    Methods Enzymol; 2011; 492():213-31. PubMed ID: 21333793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and dynamics in DNA looped domains: CAG triplet repeat sequence dynamics probed by 2-aminopurine fluorescence.
    Lee BJ; Barch M; Castner EW; Völker J; Breslauer KJ
    Biochemistry; 2007 Sep; 46(38):10756-66. PubMed ID: 17718541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural studies of a trinucleotide repeat sequence using 2-aminopurine.
    Degtyareva NN; Reddish MJ; Sengupta B; Petty JT
    Biochemistry; 2009 Mar; 48(11):2340-6. PubMed ID: 19170594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic studies of hairpin to duplex conversion for trinucleotide repeat sequences.
    Avila Figueroa A; Delaney S
    J Biol Chem; 2010 May; 285(19):14648-57. PubMed ID: 20228068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational energetics of stable and metastable states formed by DNA triplet repeat oligonucleotides: implications for triplet expansion diseases.
    Völker J; Makube N; Plum GE; Klump HH; Breslauer KJ
    Proc Natl Acad Sci U S A; 2002 Nov; 99(23):14700-5. PubMed ID: 12417759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability of intrastrand hairpin structures formed by the CAG/CTG class of DNA triplet repeats associated with neurological diseases.
    Petruska J; Arnheim N; Goodman MF
    Nucleic Acids Res; 1996 Jun; 24(11):1992-8. PubMed ID: 8668527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of sequence context and length on the structure and stability of triplet repeat DNA oligomers.
    Paiva AM; Sheardy RD
    Biochemistry; 2004 Nov; 43(44):14218-27. PubMed ID: 15518572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics and dynamics of DNA hybridization.
    Yin Y; Zhao XS
    Acc Chem Res; 2011 Nov; 44(11):1172-81. PubMed ID: 21718008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational flexibility in the RNA stem-loop structures formed by CAG repeats.
    Guo P; Chan HYE; Lam SL
    FEBS Lett; 2017 Jun; 591(12):1752-1760. PubMed ID: 28488797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A small unstructured nucleic acid disrupts a trinucleotide repeat hairpin.
    Avila-Figueroa A; Cattie D; Delaney S
    Biochem Biophys Res Commun; 2011 Oct; 413(4):532-6. PubMed ID: 21924238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slipped-strand DNAs formed by long (CAG)*(CTG) repeats: slipped-out repeats and slip-out junctions.
    Pearson CE; Tam M; Wang YH; Montgomery SE; Dar AC; Cleary JD; Nichol K
    Nucleic Acids Res; 2002 Oct; 30(20):4534-47. PubMed ID: 12384601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of strand slippage in DNA hairpins formed by CAG repeats: roles of sequence parity and trinucleotide interrupts.
    Xu P; Pan F; Roland C; Sagui C; Weninger K
    Nucleic Acids Res; 2020 Mar; 48(5):2232-2245. PubMed ID: 31974547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Resolution NMR Structures of Intrastrand Hairpins Formed by CTG Trinucleotide Repeats.
    Wan L; He A; Li J; Guo P; Han D
    ACS Chem Neurosci; 2024 Feb; 15(4):868-876. PubMed ID: 38319692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence-Dependent Effects of Monovalent Cations on the Structural Dynamics of Trinucleotide-Repeat DNA Hairpins.
    Mitchell ML; Leveille MP; Solecki RS; Tran T; Cannon B
    J Phys Chem B; 2018 Dec; 122(50):11841-11851. PubMed ID: 30441902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of even/odd trinucleotide repeat sequences modulates persistence of non-B conformations and conversion to duplex.
    Figueroa AA; Cattie D; Delaney S
    Biochemistry; 2011 May; 50(21):4441-50. PubMed ID: 21526744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unique Length-Dependent Biophysical Properties of Repetitive DNA.
    Huang J; Delaney S
    J Phys Chem B; 2016 May; 120(18):4195-203. PubMed ID: 27115707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Twisting right to left: A…A mismatch in a CAG trinucleotide repeat overexpansion provokes left-handed Z-DNA conformation.
    Khan N; Kolimi N; Rathinavelan T
    PLoS Comput Biol; 2015 Apr; 11(4):e1004162. PubMed ID: 25876062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of hairpins on template reannealing at trinucleotide repeat duplexes: a model for slipped DNA.
    Gacy AM; McMurray CT
    Biochemistry; 1998 Jun; 37(26):9426-34. PubMed ID: 9649325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.