These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 21142093)

  • 1. Novel methanogenic rotatable bioelectrochemical system operated with polarity inversion.
    Cheng KY; Ho G; Cord-Ruwisch R
    Environ Sci Technol; 2011 Jan; 45(2):796-802. PubMed ID: 21142093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy-efficient treatment of organic wastewater streams using a rotatable bioelectrochemical contactor (RBEC).
    Cheng KY; Ho G; Cord-Ruwisch R
    Bioresour Technol; 2012 Dec; 126():431-6. PubMed ID: 22209129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells.
    Luo H; Jenkins PE; Ren Z
    Environ Sci Technol; 2011 Jan; 45(1):340-4. PubMed ID: 21121677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioelectrochemical reduction of CO(2) to CH(4) via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture.
    Villano M; Aulenta F; Ciucci C; Ferri T; Giuliano A; Majone M
    Bioresour Technol; 2010 May; 101(9):3085-90. PubMed ID: 20074943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen and methane production from swine wastewater using microbial electrolysis cells.
    Wagner RC; Regan JM; Oh SE; Zuo Y; Logan BE
    Water Res; 2009 Mar; 43(5):1480-8. PubMed ID: 19138783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of pentachlorophenol and chemical oxygen demand mass concentrations in influent on operational behaviors of upflow anaerobic sludge blanket (UASB) reactor.
    Shen DS; He R; Liu XW; Long Y
    J Hazard Mater; 2006 Aug; 136(3):645-53. PubMed ID: 16513261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methanogenesis in membraneless microbial electrolysis cells.
    Clauwaert P; Verstraete W
    Appl Microbiol Biotechnol; 2009 Apr; 82(5):829-36. PubMed ID: 19050859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater.
    Cusick RD; Bryan B; Parker DS; Merrill MD; Mehanna M; Kiely PD; Liu G; Logan BE
    Appl Microbiol Biotechnol; 2011 Mar; 89(6):2053-63. PubMed ID: 21305277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Significance of biological hydrogen oxidation in a continuous single-chamber microbial electrolysis cell.
    Lee HS; Rittmann BE
    Environ Sci Technol; 2010 Feb; 44(3):948-54. PubMed ID: 20030379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of electrochemical oxidation techniques for degradation of dye effluents--a comparative approach.
    Raghu S; Lee CW; Chellammal S; Palanichamy S; Basha CA
    J Hazard Mater; 2009 Nov; 171(1-3):748-54. PubMed ID: 19592159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial electrolysis cell with a microbial biocathode.
    Jeremiasse AW; Hamelers HV; Buisman CJ
    Bioelectrochemistry; 2010 Apr; 78(1):39-43. PubMed ID: 19523879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical struvite precipitation from digestate with a fluidized bed cathode microbial electrolysis cell.
    Cusick RD; Ullery ML; Dempsey BA; Logan BE
    Water Res; 2014 May; 54():297-306. PubMed ID: 24583521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methanogenic communities on the electrodes of bioelectrochemical reactors without membranes.
    Sasaki K; Morita M; Sasaki D; Hirano S; Matsumoto N; Ohmura N; Igarashi Y
    J Biosci Bioeng; 2011 Jan; 111(1):47-9. PubMed ID: 20840887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anodophilic biofilm catalyzes cathodic oxygen reduction.
    Cheng KY; Ho G; Cord-Ruwisch R
    Environ Sci Technol; 2010 Jan; 44(1):518-25. PubMed ID: 19954225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of organic matter and nitrogen from distillery wastewater by a combination of methane fermentation and denitrification/nitrification processes.
    Li J; Zhang ZJ; Li ZR; Huang GY; Abe N
    J Environ Sci (China); 2006; 18(4):654-9. PubMed ID: 17078541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The membraneless bioelectrochemical reactor stimulates hydrogen fermentation by inhibiting methanogenic archaea.
    Sasaki K; Morita M; Sasaki D; Ohmura N; Igarashi Y
    Appl Microbiol Biotechnol; 2013 Aug; 97(15):7005-13. PubMed ID: 23053110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-electrode microbial fuel cell with horizontal liquid flow.
    Fedorovich V; Varfolomeev SD; Sizov A; Goryanin I
    Water Sci Technol; 2009; 60(2):347-55. PubMed ID: 19633376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced wastewater treatment efficiency through microbially catalyzed oxidation and reduction: synergistic effect of biocathode microenvironment.
    Mohan SV; Srikanth S
    Bioresour Technol; 2011 Nov; 102(22):10210-20. PubMed ID: 21920735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical treatment and operating cost analysis of textile wastewater using sacrificial iron electrodes.
    Kobya M; Demirbas E; Akyol A
    Water Sci Technol; 2009; 60(9):2261-70. PubMed ID: 19901457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.