BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

503 related articles for article (PubMed ID: 21142100)

  • 1. Isolation and identification of sea buckthorn (Hippophae rhamnoides) phenolics with antioxidant activity and α-glucosidase inhibitory effect.
    Kim JS; Kwon YS; Sa YJ; Kim MJ
    J Agric Food Chem; 2011 Jan; 59(1):138-44. PubMed ID: 21142100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification, quantification and antioxidant activity of acylated flavonol glycosides from sea buckthorn (Hippophae rhamnoides ssp. sinensis).
    Chen C; Xu XM; Chen Y; Yu MY; Wen FY; Zhang H
    Food Chem; 2013 Dec; 141(3):1573-9. PubMed ID: 23870862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HPLC-DAD-MS/MS profiling of antioxidant flavonoid glycosides in sea buckthorn (Hippophae rhamnoides L.) seeds.
    Arimboor R; Arumughan C
    Int J Food Sci Nutr; 2012 Sep; 63(6):730-8. PubMed ID: 22264152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative assessment of phytochemical profiles, antioxidant and antiproliferative activities of Sea buckthorn (Hippophaë rhamnoides L.) berries.
    Guo R; Guo X; Li T; Fu X; Liu RH
    Food Chem; 2017 Apr; 221():997-1003. PubMed ID: 27979305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of different organic farming methods on the phenolic composition of sea buckthorn berries.
    Heinäaho M; Hagerman AE; Julkunen-Tiitto R
    J Agric Food Chem; 2009 Mar; 57(5):1940-7. PubMed ID: 19219991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New flavonol glycosides from Aconitum burnatii Gáyer and Aconitum variegatum L.
    Vitalini S; Braca A; Passarella D; Fico G
    Fitoterapia; 2010 Oct; 81(7):940-7. PubMed ID: 20600691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antioxidant and antimicrobial properties of phenolic rich fraction of Seabuckthorn (Hippophae rhamnoides L.) leaves in vitro.
    Yogendra Kumar MS; Tirpude RJ; Maheshwari DT; Bansal A; Misra K
    Food Chem; 2013 Dec; 141(4):3443-50. PubMed ID: 23993505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antioxidant, cytoprotective and antibacterial effects of Sea buckthorn (Hippophae rhamnoides L.) leaves.
    Upadhyay NK; Kumar MS; Gupta A
    Food Chem Toxicol; 2010 Dec; 48(12):3443-8. PubMed ID: 20854873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Yeast and mammalian alpha-glucosidase inhibitory constituents from Himalayan rhubarb Rheum emodi Wall.ex Meisson.
    Suresh Babu K; Tiwari AK; Srinivas PV; Ali AZ; China Raju B; Rao JM
    Bioorg Med Chem Lett; 2004 Jul; 14(14):3841-5. PubMed ID: 15203173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antioxidant and enzyme inhibition activities and chemical profiles of Polygonum sachalinensis F.Schmidt ex Maxim (Polygonaceae).
    Fan P; Terrier L; Hay AE; Marston A; Hostettmann K
    Fitoterapia; 2010 Mar; 81(2):124-31. PubMed ID: 19698767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soil quality effects on Chenopodium album flavonoid content and antioxidant potential.
    Chludil HD; Corbino GB; Leicach SR
    J Agric Food Chem; 2008 Jul; 56(13):5050-6. PubMed ID: 18553886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenolic compounds and antioxidant activities of tea-type infusions processed from sea buckthorn (Hippophaë rhamnoides) leaves.
    Ma X; Moilanen J; Laaksonen O; Yang W; Tenhu E; Yang B
    Food Chem; 2019 Jan; 272():1-11. PubMed ID: 30309518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antioxidant activities and xanthine oxidase inhibitory effects of phenolic phytochemicals from Acacia confusa twigs and branches.
    Hsieh CY; Chang ST
    J Agric Food Chem; 2010 Feb; 58(3):1578-83. PubMed ID: 20030403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antioxidant, α-glucosidase and xanthine oxidase inhibitory activity of bioactive compounds from maize (Zea mays L.).
    Nile SH; Park SW
    Chem Biol Drug Des; 2014 Jan; 83(1):119-25. PubMed ID: 23957301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-performance liquid chromatographic fingerprint analysis for different origins of sea buckthorn berries.
    Chen C; Zhang H; Xiao W; Yong ZP; Bai N
    J Chromatogr A; 2007 Jun; 1154(1-2):250-9. PubMed ID: 17449044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural investigations of flavonol glycosides from sea buckthorn (Hippophaë rhamnoides) pomace by NMR spectroscopy and HPLC-ESI-MS(n).
    Rösch D; Krumbein A; Mügge C; Kroh LW
    J Agric Food Chem; 2004 Jun; 52(13):4039-46. PubMed ID: 15212446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antioxidant and α-glucosidase inhibitory activities of cucurbit fruit vegetables and identification of active and major constituents from phenolic-rich extracts of Lagenaria siceraria and Sechium edule.
    Sulaiman SF; Ooi KL; Supriatno
    J Agric Food Chem; 2013 Oct; 61(42):10080-90. PubMed ID: 24059845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antioxidant and anti-α-glucosidase compounds from the rhizome of Peltiphyllum peltatum (Torr.) Engl.
    Habtemariam S; Cowley RA
    Phytother Res; 2012 Nov; 26(11):1656-60. PubMed ID: 22389182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antioxidant, antimicrobial activity and inhibition of α-glucosidase activity by Betula alnoides Buch. bark extract and their relationship with polyphenolic compounds concentration.
    Ghimire BK; Tamang JP; Yu CY; Jung SJ; Chung IM
    Immunopharmacol Immunotoxicol; 2012 Oct; 34(5):824-31. PubMed ID: 22380707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological properties of sea buckthorn (Hippophae rhamnoides L.) derived products.
    Ivanišová E; Blašková M; Terentjeva M; Grygorieva O; Vergun O; Brindza J; Kačániová M
    Acta Sci Pol Technol Aliment; 2020; 19(2):195-205. PubMed ID: 32600016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.