These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 21142124)

  • 1. Fast photochemical oxidation of proteins for comparing structures of protein-ligand complexes: the calmodulin-peptide model system.
    Zhang H; Gau BC; Jones LM; Vidavsky I; Gross ML
    Anal Chem; 2011 Jan; 83(1):311-8. PubMed ID: 21142124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein Footprinting by Carbenes on a Fast Photochemical Oxidation of Proteins (FPOP) Platform.
    Zhang B; Rempel DL; Gross ML
    J Am Soc Mass Spectrom; 2016 Mar; 27(3):552-5. PubMed ID: 26679355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mass Spectrometry-Based Fast Photochemical Oxidation of Proteins (FPOP) for Higher Order Structure Characterization.
    Li KS; Shi L; Gross ML
    Acc Chem Res; 2018 Mar; 51(3):736-744. PubMed ID: 29450991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein higher-order-structure determination by fast photochemical oxidation of proteins and mass spectrometry analysis.
    Liu XR; Rempel DL; Gross ML
    Nat Protoc; 2020 Dec; 15(12):3942-3970. PubMed ID: 33169002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulfate radical anion as a new reagent for fast photochemical oxidation of proteins.
    Gau BC; Chen H; Zhang Y; Gross ML
    Anal Chem; 2010 Sep; 82(18):7821-7. PubMed ID: 20738105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast photochemical oxidation of protein footprints faster than protein unfolding.
    Gau BC; Sharp JS; Rempel DL; Gross ML
    Anal Chem; 2009 Aug; 81(16):6563-71. PubMed ID: 20337372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic delineation of a calmodulin peptide interaction.
    Hultschig C; Hecht HJ; Frank R
    J Mol Biol; 2004 Oct; 343(3):559-68. PubMed ID: 15465045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein-Ligand Interaction by Ligand Titration, Fast Photochemical Oxidation of Proteins and Mass Spectrometry: LITPOMS.
    Liu XR; Zhang MM; Rempel DL; Gross ML
    J Am Soc Mass Spectrom; 2019 Feb; 30(2):213-217. PubMed ID: 30484077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of protein-protein interactions with chemical cross-linking and mass spectrometry.
    Chavez JD; Liu NL; Bruce JE
    J Proteome Res; 2011 Apr; 10(4):1528-37. PubMed ID: 21222489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of calcium ions and peptide ligands on the relative stabilities of the calmodulin dumbbell and compact structures.
    Wyttenbach T; Grabenauer M; Thalassinos K; Scrivens JH; Bowers MT
    J Phys Chem B; 2010 Jan; 114(1):437-47. PubMed ID: 20000583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteolytic footprinting titrations for estimating ligand-binding constants and detecting pathways of conformational switching of calmodulin.
    Shea MA; Sorensen BR; Pedigo S; Verhoeven AS
    Methods Enzymol; 2000; 323():254-301. PubMed ID: 10944756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FPOP-LC-MS/MS Suggests Differences in Interaction Sites of Amphipols and Detergents with Outer Membrane Proteins.
    Watkinson TG; Calabrese AN; Ault JR; Radford SE; Ashcroft AE
    J Am Soc Mass Spectrom; 2017 Jan; 28(1):50-55. PubMed ID: 27343183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast Photochemical Oxidation of Proteins Coupled with Mass Spectrometry.
    Shi L; Gross ML
    Protein Pept Lett; 2019; 26(1):27-34. PubMed ID: 30484399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modifications generated by fast photochemical oxidation of proteins reflect the native conformations of proteins.
    Chea EE; Jones LM
    Protein Sci; 2018 Jun; 27(6):1047-1056. PubMed ID: 29575296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative modification of a carboxyl-terminal vicinal methionine in calmodulin by hydrogen peroxide inhibits calmodulin-dependent activation of the plasma membrane Ca-ATPase.
    Yao Y; Yin D; Jas GS; Kuczer K; Williams TD; Schöneich C; Squier TC
    Biochemistry; 1996 Feb; 35(8):2767-87. PubMed ID: 8611584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence analysis of calmodulin mutants containing tryptophan: conformational changes induced by calmodulin-binding peptides from myosin light chain kinase and protein kinase II.
    Chabbert M; Lukas TJ; Watterson DM; Axelsen PH; Prendergast FG
    Biochemistry; 1991 Jul; 30(30):7615-30. PubMed ID: 1854758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative protein topography analysis and high-resolution structure prediction using hydroxyl radical labeling and tandem-ion mass spectrometry (MS).
    Kaur P; Kiselar J; Yang S; Chance MR
    Mol Cell Proteomics; 2015 Apr; 14(4):1159-68. PubMed ID: 25687570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing Cellular Proteins with In-cell Fast Photochemical Oxidation of Proteins.
    Chea EE; Rinas A; Espino JA; Jones LM
    J Vis Exp; 2020 Mar; (157):. PubMed ID: 32225159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping the topology and determination of a low-resolution three-dimensional structure of the calmodulin-melittin complex by chemical cross-linking and high-resolution FTICRMS: direct demonstration of multiple binding modes.
    Schulz DM; Ihling C; Clore GM; Sinz A
    Biochemistry; 2004 Apr; 43(16):4703-15. PubMed ID: 15096039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the oxidative damage-induced conformational changes of apo- and holocalmodulin by dose-dependent protein oxidative surface mapping.
    Sharp JS; Tomer KB
    Biophys J; 2007 Mar; 92(5):1682-92. PubMed ID: 17158574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.