BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 21142212)

  • 1. A reciprocal 15N-labeling proteomic analysis of expanding Arabidopsis leaves subjected to osmotic stress indicates importance of mitochondria in preserving plastid functions.
    Skirycz A; Memmi S; De Bodt S; Maleux K; Obata T; Fernie AR; Devreese B; Inzé D
    J Proteome Res; 2011 Mar; 10(3):1018-29. PubMed ID: 21142212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential transcript regulation in Arabidopsis thaliana and the halotolerant Lobularia maritima indicates genes with potential function in plant salt adaptation.
    Popova OV; Yang O; Dietz KJ; Golldack D
    Gene; 2008 Nov; 423(2):142-8. PubMed ID: 18703123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased expression of OsSPX1 enhances cold/subfreezing tolerance in tobacco and Arabidopsis thaliana.
    Zhao L; Liu F; Xu W; Di C; Zhou S; Xue Y; Yu J; Su Z
    Plant Biotechnol J; 2009 Aug; 7(6):550-61. PubMed ID: 19508276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic analysis of Medicago truncatula root plastids.
    Daher Z; Recorbet G; Valot B; Robert F; Balliau T; Potin S; Schoefs B; Dumas-Gaudot E
    Proteomics; 2010 Jun; 10(11):2123-37. PubMed ID: 20336678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila.
    Pang Q; Chen S; Dai S; Chen Y; Wang Y; Yan X
    J Proteome Res; 2010 May; 9(5):2584-99. PubMed ID: 20377188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomic analysis of salt-responsive proteins in the mangrove plant, Bruguiera gymnorhiza.
    Tada Y; Kashimura T
    Plant Cell Physiol; 2009 Mar; 50(3):439-46. PubMed ID: 19131358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic comparison of plastids from developing embryos and leaves of Brassica napus.
    Demartini DR; Jain R; Agrawal G; Thelen JJ
    J Proteome Res; 2011 May; 10(5):2226-37. PubMed ID: 21417358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic analysis of rice leaves shows the different regulations to osmotic stress and stress signals.
    Shu LB; Ding W; Wu JH; Feng FJ; Luo LJ; Mei HW
    J Integr Plant Biol; 2010 Nov; 52(11):981-95. PubMed ID: 20977656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Desiccation tolerance mechanism in resurrection fern-ally Selaginella tamariscina revealed by physiological and proteomic analysis.
    Wang X; Chen S; Zhang H; Shi L; Cao F; Guo L; Xie Y; Wang T; Yan X; Dai S
    J Proteome Res; 2010 Dec; 9(12):6561-77. PubMed ID: 20923197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic analysis of cucumber seedling roots subjected to salt stress.
    Du CX; Fan HF; Guo SR; Tezuka T; Li J
    Phytochemistry; 2010 Sep; 71(13):1450-9. PubMed ID: 20580043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential proteomic response of rice (Oryza sativa) leaves exposed to high- and low-temperature stress.
    Gammulla CG; Pascovici D; Atwell BJ; Haynes PA
    Proteomics; 2011 Jul; 11(14):2839-50. PubMed ID: 21695689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous expression in tobacco leaves of a Brassica napus PEND homologue blocks differentiation of plastids and development of palisade cells.
    Wycliffe P; Sitbon F; Wernersson J; Ezcurra I; Ellerström M; Rask L
    Plant J; 2005 Oct; 44(1):1-15. PubMed ID: 16167891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative detection of changes in the leaf-mesophyll tonoplast proteome in dependency of a cadmium exposure of barley (Hordeum vulgare L.) plants.
    Schneider T; Schellenberg M; Meyer S; Keller F; Gehrig P; Riedel K; Lee Y; Eberl L; Martinoia E
    Proteomics; 2009 May; 9(10):2668-77. PubMed ID: 19391183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteome analysis of tobacco leaves under salt stress.
    Razavizadeh R; Ehsanpour AA; Ahsan N; Komatsu S
    Peptides; 2009 Sep; 30(9):1651-9. PubMed ID: 19573571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical and quantitative proteomics investigations in Arabidopsis ggt1 mutant leaves reveal a role for the gamma-glutamyl cycle in plant's adaptation to environment.
    Tolin S; Arrigoni G; Trentin AR; Veljovic-Jovanovic S; Pivato M; Zechman B; Masi A
    Proteomics; 2013 Jun; 13(12-13):2031-45. PubMed ID: 23661340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf.
    Kim DW; Rakwal R; Agrawal GK; Jung YH; Shibato J; Jwa NS; Iwahashi Y; Iwahashi H; Kim DH; Shim IeS; Usui K
    Electrophoresis; 2005 Dec; 26(23):4521-39. PubMed ID: 16315177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 15N-metabolic labeling for comparative plasma membrane proteomics in Arabidopsis cells.
    Lanquar V; Kuhn L; Lelièvre F; Khafif M; Espagne C; Bruley C; Barbier-Brygoo H; Garin J; Thomine S
    Proteomics; 2007 Mar; 7(5):750-4. PubMed ID: 17285564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance.
    Yang O; Popova OV; Süthoff U; Lüking I; Dietz KJ; Golldack D
    Gene; 2009 May; 436(1-2):45-55. PubMed ID: 19248824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of proteins associated with water-deficit tolerance in C4 perennial grass species, Cynodon dactylon×Cynodon transvaalensis and Cynodon dactylon.
    Zhao Y; Du H; Wang Z; Huang B
    Physiol Plant; 2011 Jan; 141(1):40-55. PubMed ID: 21029106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and characterization of proteins associated with plant tolerance to heat stress.
    Huang B; Xu C
    J Integr Plant Biol; 2008 Oct; 50(10):1230-7. PubMed ID: 19017110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.