These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 21142329)
1. Knee joint secondary motion accuracy improved by quaternion-based optimizer with bony landmark constraints. Wang H; Zheng NN J Biomech Eng; 2010 Dec; 132(12):124502. PubMed ID: 21142329 [TBL] [Abstract][Full Text] [Related]
2. Validation of a new method for finding the rotational axes of the knee using both marker-based roentgen stereophotogrammetric analysis and 3D video-based motion analysis for kinematic measurements. Roland M; Hull ML; Howell SM J Biomech Eng; 2011 May; 133(5):051003. PubMed ID: 21599094 [TBL] [Abstract][Full Text] [Related]
3. Virtual axis finder: a new method to determine the two kinematic axes of rotation for the tibio-femoral joint. Roland M; Hull ML; Howell SM J Biomech Eng; 2010 Jan; 132(1):011009. PubMed ID: 20524747 [TBL] [Abstract][Full Text] [Related]
4. Soft tissue artifact compensation in knee kinematics by double anatomical landmark calibration: performance of a novel method during selected motor tasks. Cappello A; Stagni R; Fantozzi S; Leardini A IEEE Trans Biomed Eng; 2005 Jun; 52(6):992-8. PubMed ID: 15977729 [TBL] [Abstract][Full Text] [Related]
5. Do kinematic models reduce the effects of soft tissue artefacts in skin marker-based motion analysis? An in vivo study of knee kinematics. Andersen MS; Benoit DL; Damsgaard M; Ramsey DK; Rasmussen J J Biomech; 2010 Jan; 43(2):268-73. PubMed ID: 19879581 [TBL] [Abstract][Full Text] [Related]
6. Marker-based reconstruction of the kinematics of a chain of segments: a new method that incorporates joint kinematic constraints. Klous M; Klous S J Biomech Eng; 2010 Jul; 132(7):074501. PubMed ID: 20590294 [TBL] [Abstract][Full Text] [Related]
7. A global verification study of a quasi-static knee model with multi-bundle ligaments. Mommersteeg TJ; Huiskes R; Blankevoort L; Kooloos JG; Kauer JM; Maathuis PG J Biomech; 1996 Dec; 29(12):1659-64. PubMed ID: 8945669 [TBL] [Abstract][Full Text] [Related]
8. Comparison of cutaneous and transosseous electromagnetic position sensors in the assessment of tibial rotation in a cadaveric model. Magit DP; McGarry M; Tibone JE; Lee TQ Am J Sports Med; 2008 May; 36(5):971-7. PubMed ID: 18272792 [TBL] [Abstract][Full Text] [Related]
9. Comparative assessment of bone pose estimation using Point Cluster Technique and OpenSim. Lathrop RL; Chaudhari AM; Siston RA J Biomech Eng; 2011 Nov; 133(11):114503. PubMed ID: 22168744 [TBL] [Abstract][Full Text] [Related]
10. Influence of joint constraints on lower limb kinematics estimation from skin markers using global optimization. Duprey S; Cheze L; Dumas R J Biomech; 2010 Oct; 43(14):2858-62. PubMed ID: 20701914 [TBL] [Abstract][Full Text] [Related]
11. A survey of formal methods for determining functional joint axes. Ehrig RM; Taylor WR; Duda GN; Heller MO J Biomech; 2007; 40(10):2150-7. PubMed ID: 17169365 [TBL] [Abstract][Full Text] [Related]
12. Three-dimensional kinematics of the human knee with intracortical pin fixation. Ishii Y; Terajima K; Terashima S; Koga Y Clin Orthop Relat Res; 1997 Oct; (343):144-50. PubMed ID: 9345219 [TBL] [Abstract][Full Text] [Related]
13. A fast quaternion-based orientation optimizer via virtual rotation for human motion tracking. Lee JK; Park EJ IEEE Trans Biomed Eng; 2009 May; 56(5):1574-82. PubMed ID: 19473934 [TBL] [Abstract][Full Text] [Related]
14. Tracking the motion of hidden segments using kinematic constraints and Kalman filtering. Halvorsen K; Johnston C; Back W; Stokes V; Lanshammar H J Biomech Eng; 2008 Feb; 130(1):011012. PubMed ID: 18298188 [TBL] [Abstract][Full Text] [Related]
15. A new approach to accurate measurement of uniaxial joint angles based on a combination of accelerometers and gyroscopes. Dejnabadi H; Jolles BM; Aminian K IEEE Trans Biomed Eng; 2005 Aug; 52(8):1478-84. PubMed ID: 16119244 [TBL] [Abstract][Full Text] [Related]
16. Investigation of soft tissue movement during level walking: translations and rotations of skin markers. Gao B; Zheng NN J Biomech; 2008 Nov; 41(15):3189-95. PubMed ID: 18930462 [TBL] [Abstract][Full Text] [Related]
17. Propagation of anatomical landmark misplacement to knee kinematics: performance of single and double calibration. Stagni R; Fantozzi S; Cappello A Gait Posture; 2006 Oct; 24(2):137-41. PubMed ID: 16934471 [TBL] [Abstract][Full Text] [Related]
18. In vitro assessment of a motion-based optimization method for locating the talocrural and subtalar joint axes. Lewis GS; Sommer HJ; Piazza SJ J Biomech Eng; 2006 Aug; 128(4):596-603. PubMed ID: 16813451 [TBL] [Abstract][Full Text] [Related]
19. Bone landmarks are more reliable than tensioned gaps in TKA component alignment. Hanada H; Whiteside LA; Steiger J; Dyer P; Naito M Clin Orthop Relat Res; 2007 Sep; 462():137-42. PubMed ID: 17563704 [TBL] [Abstract][Full Text] [Related]
20. Sensitivity of tibio-menisco-femoral joint contact behavior to variations in knee kinematics. Yao J; Salo AD; Lee J; Lerner AL J Biomech; 2008; 41(2):390-8. PubMed ID: 17950743 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]