BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 21143045)

  • 1. Development of novel biodegradable polymer scaffolds for vascular tissue engineering.
    Gui L; Zhao L; Spencer RW; Burghouwt A; Taylor MS; Shalaby SW; Niklason LE
    Tissue Eng Part A; 2011 May; 17(9-10):1191-200. PubMed ID: 21143045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preliminary experience with tissue engineering of a venous vascular patch by using bone marrow-derived cells and a hybrid biodegradable polymer scaffold.
    Cho SW; Jeon O; Lim JE; Gwak SJ; Kim SS; Choi CY; Kim DI; Kim BS
    J Vasc Surg; 2006 Dec; 44(6):1329-40. PubMed ID: 17145438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new tissue-engineered biodegradable surgical patch for high-pressure systems †.
    Ichihara Y; Shinoka T; Matsumura G; Ikada Y; Yamazaki K
    Interact Cardiovasc Thorac Surg; 2015 Jun; 20(6):768-76. PubMed ID: 25721511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications.
    Stefani I; Cooper-White JJ
    Acta Biomater; 2016 May; 36():231-40. PubMed ID: 26969522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrophilization of synthetic biodegradable polymer scaffolds for improved cell/tissue compatibility.
    Oh SH; Lee JH
    Biomed Mater; 2013 Feb; 8(1):014101. PubMed ID: 23472257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative analysis of poly-glycolic acid-based hybrid polymer starter matrices for in vitro tissue engineering.
    Generali M; Kehl D; Capulli AK; Parker KK; Hoerstrup SP; Weber B
    Colloids Surf B Biointerfaces; 2017 Oct; 158():203-212. PubMed ID: 28697435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superior Tissue Evolution in Slow-Degrading Scaffolds for Valvular Tissue Engineering.
    Brugmans MM; Soekhradj-Soechit RS; van Geemen D; Cox M; Bouten CV; Baaijens FP; Driessen-Mol A
    Tissue Eng Part A; 2016 Jan; 22(1-2):123-32. PubMed ID: 26466917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies.
    Lu HH; Cooper JA; Manuel S; Freeman JW; Attawia MA; Ko FK; Laurencin CT
    Biomaterials; 2005 Aug; 26(23):4805-16. PubMed ID: 15763260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adhesion of fibroblast cells on thin films representing surfaces of polymeric scaffolds of human urethra rationalized by molecular models of integrin binding: cell adhesion on polymeric scaffolds for regenerative medicine.
    Braccini S; Pecorini G; Chiellini F; Bakos D; Miertus S; Frecer V
    J Biotechnol; 2020 Dec; 324():233-238. PubMed ID: 33157195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering porcine arteries: effects of scaffold modification.
    Prabhakar V; Grinstaff MW; Alarcon J; Knors C; Solan AK; Niklason LE
    J Biomed Mater Res A; 2003 Oct; 67(1):303-11. PubMed ID: 14517890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering.
    Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M
    Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinctive degradation behaviors of electrospun polyglycolide, poly(DL-lactide-co-glycolide), and poly(L-lactide-co-epsilon-caprolactone) nanofibers cultured with/without porcine smooth muscle cells.
    Dong Y; Yong T; Liao S; Chan CK; Stevens MM; Ramakrishna S
    Tissue Eng Part A; 2010 Jan; 16(1):283-98. PubMed ID: 19839726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro.
    Lu HH; El-Amin SF; Scott KD; Laurencin CT
    J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Fabrication of a blood vessel scaffold with a combined polymer for tissue engineering].
    Pan Y; Huang W; Ai YF; Xiong M; Zhang LX; Peng P
    Zhonghua Zheng Xing Wai Ke Za Zhi; 2003 Jan; 19(1):44-6. PubMed ID: 12778796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrospun Nanofiber Scaffolds and Their Hydrogel Composites for the Engineering and Regeneration of Soft Tissues.
    Manoukian OS; Matta R; Letendre J; Collins P; Mazzocca AD; Kumbar SG
    Methods Mol Biol; 2017; 1570():261-278. PubMed ID: 28238143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elastic biodegradable poly(glycolide-co-caprolactone) scaffold for tissue engineering.
    Lee SH; Kim BS; Kim SH; Choi SW; Jeong SI; Kwon IK; Kang SW; Nikolovski J; Mooney DJ; Han YK; Kim YH
    J Biomed Mater Res A; 2003 Jul; 66(1):29-37. PubMed ID: 12833428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo behavior of poly(1,3-trimethylene carbonate) and copolymers of 1,3-trimethylene carbonate with D,L-lactide or epsilon-caprolactone: Degradation and tissue response.
    Pêgo AP; Van Luyn MJ; Brouwer LA; van Wachem PB; Poot AA; Grijpma DW; Feijen J
    J Biomed Mater Res A; 2003 Dec; 67(3):1044-54. PubMed ID: 14613255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue engineered vessel from a biodegradable electrospun scaffold stimulated with mechanical stretch.
    Hodge J; Quint C
    Biomed Mater; 2020 Jul; 15(5):055006. PubMed ID: 32348975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel melt-processable chitosan-polybutylene succinate fibre scaffolds for cartilage tissue engineering.
    Oliveira JT; Crawford A; Mundy JL; Sol PC; Correlo VM; Bhattacharya M; Neves NM; Hatton PV; Reis RL
    J Biomater Sci Polym Ed; 2011; 22(4-6):773-88. PubMed ID: 20566057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-linked poly(trimethylene carbonate-co-L-lactide) as a biodegradable, elastomeric scaffold for vascular engineering applications.
    Dargaville BL; Vaquette C; Peng H; Rasoul F; Chau YQ; Cooper-White JJ; Campbell JH; Whittaker AK
    Biomacromolecules; 2011 Nov; 12(11):3856-69. PubMed ID: 21999900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.