BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 21143326)

  • 21. InhA, the enoyl-thioester reductase from
    Vögeli B; Rosenthal RG; Stoffel GMM; Wagner T; Kiefer P; Cortina NS; Shima S; Erb TJ
    J Biol Chem; 2018 Nov; 293(44):17200-17207. PubMed ID: 30217823
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mutations in the essential FAS II β-hydroxyacyl ACP dehydratase complex confer resistance to thiacetazone in Mycobacterium tuberculosis and Mycobacterium kansasii.
    Belardinelli JM; Morbidoni HR
    Mol Microbiol; 2012 Nov; 86(3):568-79. PubMed ID: 22994892
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The missing piece of the type II fatty acid synthase system from Mycobacterium tuberculosis.
    Sacco E; Covarrubias AS; O'Hare HM; Carroll P; Eynard N; Jones TA; Parish T; Daffé M; Bäckbro K; Quémard A
    Proc Natl Acad Sci U S A; 2007 Sep; 104(37):14628-33. PubMed ID: 17804795
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular dynamics simulation studies of the wild-type, I21V, and I16T mutants of isoniazid-resistant Mycobacterium tuberculosis enoyl reductase (InhA) in complex with NADH: toward the understanding of NADH-InhA different affinities.
    Schroeder EK; Basso LA; Santos DS; de Souza ON
    Biophys J; 2005 Aug; 89(2):876-84. PubMed ID: 15908576
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The mycolic acid reductase Rv2509 has distinct structural motifs and is essential for growth in slow-growing mycobacteria.
    Javid A; Cooper C; Singh A; Schindler S; Hänisch M; Marshall RL; Kalscheuer R; Bavro VN; Bhatt A
    Mol Microbiol; 2020 Feb; 113(2):521-533. PubMed ID: 31785114
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phosphorylation of mycobacterial PcaA inhibits mycolic acid cyclopropanation: consequences for intracellular survival and for phagosome maturation block.
    Corrales RM; Molle V; Leiba J; Mourey L; de Chastellier C; Kremer L
    J Biol Chem; 2012 Jul; 287(31):26187-99. PubMed ID: 22621931
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Disruption of key NADH-binding pocket residues of the Mycobacterium tuberculosis InhA affects DD-CoA binding ability.
    Shaw DJ; Robb K; Vetter BV; Tong M; Molle V; Hunt NT; Hoskisson PA
    Sci Rep; 2017 Jul; 7(1):4714. PubMed ID: 28680153
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein-protein interactions within the Fatty Acid Synthase-II system of Mycobacterium tuberculosis are essential for mycobacterial viability.
    Veyron-Churlet R; Guerrini O; Mourey L; Daffé M; Zerbib D
    Mol Microbiol; 2004 Dec; 54(5):1161-72. PubMed ID: 15554959
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Designing quinoline-isoniazid hybrids as potent anti-tubercular agents inhibiting mycolic acid biosynthesis.
    Alcaraz M; Sharma B; Roquet-Banères F; Conde C; Cochard T; Biet F; Kumar V; Kremer L
    Eur J Med Chem; 2022 Sep; 239():114531. PubMed ID: 35759907
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conformational changes in 2-trans-enoyl-ACP (CoA) reductase (InhA) from M. tuberculosis induced by an inorganic complex: a molecular dynamics simulation study.
    da Costa AL; Pauli I; Dorn M; Schroeder EK; Zhan CG; de Souza ON
    J Mol Model; 2012 May; 18(5):1779-90. PubMed ID: 21833828
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The biosynthesis of mycolic acids in Mycobacterium tuberculosis relies on multiple specialized elongation complexes interconnected by specific protein-protein interactions.
    Veyron-Churlet R; Bigot S; Guerrini O; Verdoux S; Malaga W; Daffé M; Zerbib D
    J Mol Biol; 2005 Nov; 353(4):847-58. PubMed ID: 16213523
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Elucidating isoniazid resistance using molecular modeling.
    Wahab HA; Choong YS; Ibrahim P; Sadikun A; Scior T
    J Chem Inf Model; 2009 Jan; 49(1):97-107. PubMed ID: 19067649
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hallmarks of mycolic acid biosynthesis: a comparative genomics study.
    Raman K; Rajagopalan P; Chandra N
    Proteins; 2007 Nov; 69(2):358-68. PubMed ID: 17600834
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The dual function of the Mycobacterium tuberculosis FadD32 required for mycolic acid biosynthesis.
    Léger M; Gavalda S; Guillet V; van der Rest B; Slama N; Montrozier H; Mourey L; Quémard A; Daffé M; Marrakchi H
    Chem Biol; 2009 May; 16(5):510-9. PubMed ID: 19477415
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phosphorylation of KasB regulates virulence and acid-fastness in Mycobacterium tuberculosis.
    Vilchèze C; Molle V; Carrère-Kremer S; Leiba J; Mourey L; Shenai S; Baronian G; Tufariello J; Hartman T; Veyron-Churlet R; Trivelli X; Tiwari S; Weinrick B; Alland D; Guérardel Y; Jacobs WR; Kremer L
    PLoS Pathog; 2014 May; 10(5):e1004115. PubMed ID: 24809459
    [TBL] [Abstract][Full Text] [Related]  

  • 36. InhA, a target of the antituberculous drug isoniazid, is involved in a mycobacterial fatty acid elongation system, FAS-II.
    Marrakchi H; Lanéelle G; Quémard AK
    Microbiology (Reading); 2000 Feb; 146 ( Pt 2)():289-296. PubMed ID: 10708367
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flux balance analysis of mycolic acid pathway: targets for anti-tubercular drugs.
    Raman K; Rajagopalan P; Chandra N
    PLoS Comput Biol; 2005 Oct; 1(5):e46. PubMed ID: 16261191
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enzymatic characterization of the target for isoniazid in Mycobacterium tuberculosis.
    Quémard A; Sacchettini JC; Dessen A; Vilcheze C; Bittman R; Jacobs WR; Blanchard JS
    Biochemistry; 1995 Jul; 34(26):8235-41. PubMed ID: 7599116
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mycolic acid methyltransferase, MmaA4, is necessary for thiacetazone susceptibility in Mycobacterium tuberculosis.
    Alahari A; Alibaud L; Trivelli X; Gupta R; Lamichhane G; Reynolds RC; Bishai WR; Guerardel Y; Kremer L
    Mol Microbiol; 2009 Mar; 71(5):1263-77. PubMed ID: 19183278
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ser/Thr Phosphorylation Regulates the Fatty Acyl-AMP Ligase Activity of FadD32, an Essential Enzyme in Mycolic Acid Biosynthesis.
    Le NH; Molle V; Eynard N; Miras M; Stella A; Bardou F; Galandrin S; Guillet V; André-Leroux G; Bellinzoni M; Alzari P; Mourey L; Burlet-Schiltz O; Daffé M; Marrakchi H
    J Biol Chem; 2016 Oct; 291(43):22793-22805. PubMed ID: 27590338
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.