These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 21143366)
1. In cirrhotic patients reduced muscle strength is unrelated to muscle capacity for ATP turnover suggesting a central limitation. Gam CM; Nielsen HB; Secher NH; Larsen FS; Ott P; Quistorff B Clin Physiol Funct Imaging; 2011 May; 31(3):169-74. PubMed ID: 21143366 [TBL] [Abstract][Full Text] [Related]
2. Reduced mitochondrial adenosine triphosphate synthesis in skeletal muscle in patients with Child-Pugh class B and C cirrhosis. Jacobsen EB; Hamberg O; Quistorff B; Ott P Hepatology; 2001 Jul; 34(1):7-12. PubMed ID: 11431727 [TBL] [Abstract][Full Text] [Related]
3. High-energy phosphate metabolism in the exercising muscle of patients with peripheral arterial disease. Schocke M; Esterhammer R; Greiner A Vasa; 2008 Aug; 37(3):199-210. PubMed ID: 18690587 [TBL] [Abstract][Full Text] [Related]
5. Abnormal in vivo skeletal muscle energy metabolism in Huntington's disease and dentatorubropallidoluysian atrophy. Lodi R; Schapira AH; Manners D; Styles P; Wood NW; Taylor DJ; Warner TT Ann Neurol; 2000 Jul; 48(1):72-6. PubMed ID: 10894218 [TBL] [Abstract][Full Text] [Related]
6. Phosphocreatine synthesis by isolated rat skeletal muscle mitochondria is not dependent upon external ADP: a 31P NMR study. Kernec F; Le Tallec N; Nadal L; Bégué JM; Le Rumeur E Biochem Biophys Res Commun; 1996 Aug; 225(3):819-25. PubMed ID: 8780696 [TBL] [Abstract][Full Text] [Related]
7. Abnormality of energy metabolism in the skeletal muscle of patients with liver cirrhosis and changes under administration of glucose and branched-chain amino acids. Doi J; Shiraishi K; Haida M; Matsuzaki S Tokai J Exp Clin Med; 2004 Dec; 29(4):191-8. PubMed ID: 15717491 [TBL] [Abstract][Full Text] [Related]
8. Physiological implications of linear kinetics of mitochondrial respiration in vitro. Kemp G Am J Physiol Cell Physiol; 2008 Sep; 295(3):C844-6; author reply C847-8. PubMed ID: 18776157 [No Abstract] [Full Text] [Related]
9. Failure of brain and skeletal muscle energy metabolism in multiple system atrophy shown by in vivo phosphorous MR spectroscopy. Martinelli P; Giuliani S; Lodi R; Iotti S; Zaniol P; Barbiroli B Adv Neurol; 1996; 69():271-7. PubMed ID: 8615139 [No Abstract] [Full Text] [Related]
10. Morphology, metabolism, microcirculation, and strength of skeletal muscles in cancer-related cachexia. Weber MA; Krakowski-Roosen H; Schröder L; Kinscherf R; Krix M; Kopp-Schneider A; Essig M; Bachert P; Kauczor HU; Hildebrandt W Acta Oncol; 2009; 48(1):116-24. PubMed ID: 18607877 [TBL] [Abstract][Full Text] [Related]
11. The effect of propionyl L-carnitine on skeletal muscle metabolism in renal failure. Thompson CH; Irish AB; Kemp GJ; Taylor DJ; Radda GK Clin Nephrol; 1997 Jun; 47(6):372-8. PubMed ID: 9202867 [TBL] [Abstract][Full Text] [Related]
12. Glycolysis in contracting rat skeletal muscle is controlled by factors related to energy state. Ortenblad N; Macdonald WA; Sahlin K Biochem J; 2009 May; 420(2):161-8. PubMed ID: 19250062 [TBL] [Abstract][Full Text] [Related]
13. Energy metabolism in muscle approaching maximal rates of oxygen utilization. Wilson DF Med Sci Sports Exerc; 1995 Jan; 27(1):54-9. PubMed ID: 7898338 [TBL] [Abstract][Full Text] [Related]
14. CKD and Muscle Mitochondrial Energetics. Roshanravan B; Kestenbaum B; Gamboa J; Jubrias SA; Ayers E; Curtin L; Himmelfarb J; de Boer IH; Conley KE Am J Kidney Dis; 2016 Oct; 68(4):658-659. PubMed ID: 27312460 [No Abstract] [Full Text] [Related]
15. Breakdown of adenine nucleotide pool in fatiguing skeletal muscle in McArdle's disease: a noninvasive 31P-MRS and EMG study. Zange J; Grehl T; Disselhorst-Klug C; Rau G; Müller K; Schröder R; Tegenthoff M; Malin JP; Vorgerd M Muscle Nerve; 2003 Jun; 27(6):728-36. PubMed ID: 12766985 [TBL] [Abstract][Full Text] [Related]
16. ATP economy of force maintenance in human tibialis anterior muscle. Nakagawa Y; Ratkevicius A; Mizuno M; Quistorff B Med Sci Sports Exerc; 2005 Jun; 37(6):937-43. PubMed ID: 15947717 [TBL] [Abstract][Full Text] [Related]
17. Uraemic muscle metabolism at rest and during exercise. Thompson CH; Kemp GJ; Barnes PR; Rajagopalan B; Styles P; Taylor DJ; Radda GK Nephrol Dial Transplant; 1994; 9(11):1600-5. PubMed ID: 7870350 [TBL] [Abstract][Full Text] [Related]
18. Regulation of oxidative and glycogenolytic ATP synthesis in exercising rat skeletal muscle studied by 31P magnetic resonance spectroscopy. Kemp GJ; Sanderson AL; Thompson CH; Radda GK NMR Biomed; 1996 Sep; 9(6):261-70. PubMed ID: 9073304 [TBL] [Abstract][Full Text] [Related]
19. Absolute quantification of phosphorus metabolite concentrations in human muscle in vivo by 31P MRS: a quantitative review. Kemp GJ; Meyerspeer M; Moser E NMR Biomed; 2007 Oct; 20(6):555-65. PubMed ID: 17628042 [TBL] [Abstract][Full Text] [Related]
20. In vivo modular control analysis of energy metabolism in contracting skeletal muscle. Arsac LM; Beuste C; Miraux S; Deschodt-Arsac V; Thiaudiere E; Franconi JM; Diolez PH Biochem J; 2008 Sep; 414(3):391-7. PubMed ID: 18498244 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]