These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 211436)
41. A role for cAMP in the development of functional neuromuscular transmission. Dubinsky JM; Fischbach GD J Neurobiol; 1990 Apr; 21(3):414-26. PubMed ID: 2161908 [TBL] [Abstract][Full Text] [Related]
43. Natural probes for cholinergic sites: L-bebeerine actions on the neuromuscular transmission, the nicotinic receptor/ionic channel complex, and contraction of skeletal muscles. Souccar C; BorrĂ¡s MR; Corrado AP; Lima-Landman MT; Lapa AJ Acta Physiol Pharmacol Ther Latinoam; 1999; 49(4):268-78. PubMed ID: 10797870 [TBL] [Abstract][Full Text] [Related]
44. An effect of isethionate on neuromuscular transmission in the frog [proceedings]. Ashford ML; Wann KT J Physiol; 1978 Dec; 285():48P-49P. PubMed ID: 217991 [No Abstract] [Full Text] [Related]
45. Cytochemical and physiological evidence for cholinergic, neurogenic vasodilation of amphibian arterioles and precapillary sphincters. I. Light microscopy. Siggins GR; Weitsen HA Microvasc Res; 1971 Jul; 3(3):308-22. PubMed ID: 4106944 [No Abstract] [Full Text] [Related]
46. Muscle length and neuromuscular transmission in the frog. IJpeij DL; Kerkhof PL; Bobbert AC Pflugers Arch; 1974 Mar; 347(4):309-22. PubMed ID: 4368941 [No Abstract] [Full Text] [Related]
47. Recycling of synaptic vesicles in motor nerve endings separated from their target muscle fibers. Tal M; Rotshenker S Brain Res; 1983 Jun; 270(1):131-3. PubMed ID: 6603252 [TBL] [Abstract][Full Text] [Related]
48. Role of cyclic AMP in synaptic transmission in the mammalian peripheral nervous system. Greengard P; Kebabian JW Fed Proc; 1974 Apr; 33(4):1059-67. PubMed ID: 4361907 [No Abstract] [Full Text] [Related]
49. Carboxylate modification of neuromuscular transmission in the frog. Stuesse S; Katz NL Am J Physiol; 1973 Jan; 224(1):55-61. PubMed ID: 4345739 [No Abstract] [Full Text] [Related]
51. Antagonism by some beta-adrenoceptor-blocking agents to cholinergic stimulation of skeletal muscle in vitro. Kelkar VV; Gupta RS; Jariwala NU; Joshi NJ Pharmacology; 1979; 18(6):319-26. PubMed ID: 40268 [TBL] [Abstract][Full Text] [Related]
52. pH dependence of the acetylcholine receptor channel: a species variation. Landau EM; Gavish B; Nachshen DA; Lotan I J Gen Physiol; 1981 Jun; 77(6):647-66. PubMed ID: 6267164 [TBL] [Abstract][Full Text] [Related]
54. A study of desensitization of acetylcholine receptors using nerve-released transmitter in the frog. Magleby KL; Pallotta BS J Physiol; 1981 Jul; 316():225-50. PubMed ID: 6275065 [TBL] [Abstract][Full Text] [Related]
57. [Binomial parameters of mediator release in the process of facilitation of neuromuscular transmission]. Zefirov AL Neirofiziologiia; 1980; 12(3):314-6. PubMed ID: 6105625 [TBL] [Abstract][Full Text] [Related]
58. Modulation of cyclic nucleotide levels in peripheral nerve without effect on resting or compound action potentials. Horn JP; McAfee DA J Physiol; 1977 Aug; 269(3):753-66. PubMed ID: 197234 [TBL] [Abstract][Full Text] [Related]
59. Mechanism of nicotinic channel activation and blockade. Albuquerque EX; Adler M; Spivak CE; Aguayo L Ann N Y Acad Sci; 1980; 358():204-38. PubMed ID: 6259990 [No Abstract] [Full Text] [Related]
60. The influence of basal lamina on the accumulation of acetylcholine receptors at synaptic sites in regenerating muscle. McMahan UJ; Slater CR J Cell Biol; 1984 Apr; 98(4):1453-73. PubMed ID: 6609164 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]