BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 21143610)

  • 1. Resonances in the cardiovascular system caused by rhythmical muscle tension.
    Vaschillo EG; Vaschillo B; Pandina RJ; Bates ME
    Psychophysiology; 2011 Jul; 48(7):927-36. PubMed ID: 21143610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of rhythmical muscle tension at 0.1Hz on cardiovascular resonance and the baroreflex.
    Lehrer P; Vaschillo E; Trost Z; France CR
    Biol Psychol; 2009 Apr; 81(1):24-30. PubMed ID: 19428965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of sighing on the cardiovascular system.
    Vaschillo EG; Vaschillo B; Buckman JF; Nguyen-Louie T; Heiss S; Pandina RJ; Bates ME
    Biol Psychol; 2015 Mar; 106():86-95. PubMed ID: 25720947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adding Core Muscle Contraction to Wrist-Ankle Rhythmical Skeletal Muscle Tension Increases Respiratory Sinus Arrhythmia and Low-Frequency Power.
    Meehan ZM; Shaffer F
    Appl Psychophysiol Biofeedback; 2023 Mar; 48(1):127-134. PubMed ID: 36469169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rhythmic Skeletal Muscle Tension Increases Heart Rate Variability at 1 and 6 Contractions Per Minute.
    Shaffer F; Moss D; Meehan ZM
    Appl Psychophysiol Biofeedback; 2022 Sep; 47(3):183-192. PubMed ID: 35258750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heart rate variability biofeedback as a method for assessing baroreflex function: a preliminary study of resonance in the cardiovascular system.
    Vaschillo E; Lehrer P; Rishe N; Konstantinov M
    Appl Psychophysiol Biofeedback; 2002 Mar; 27(1):1-27. PubMed ID: 12001882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can arterial elasticity be estimated from heart rate variability response to paced 0.066 Hz sighing?
    Vaschillo B; Vaschillo EG
    Psychophysiology; 2020 Aug; 57(8):e13552. PubMed ID: 32100310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficacy of Paced Breathing at the Low-frequency Peak on Heart Rate Variability and Baroreflex Sensitivity.
    Sakakibara M; Kaneda M; Oikawa LO
    Appl Psychophysiol Biofeedback; 2020 Mar; 45(1):31-37. PubMed ID: 31781925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Phase and frequency locking of 0.1 Hz oscillations in heart rhythm and baroreflex control of arterial pressure by respiration with linearly varying frequency in healthy subjects].
    Karavaev AS; Kiselev AR; Gridnev VI; Borovkova EI; Prokhorov MD; Posnenkova OM; Ponomarenkova OM; Ponomarenko VI; Bezruchko BP; Shvarts VA
    Fiziol Cheloveka; 2013; 39(4):93-104. PubMed ID: 25486835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The importance of high-frequency paced breathing in spectral baroreflex sensitivity assessment.
    Frederiks J; Swenne CA; TenVoorde BJ; Honzíková N; Levert JV; Maan AC; Schalij MJ; Bruschke AV
    J Hypertens; 2000 Nov; 18(11):1635-44. PubMed ID: 11081777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Baroreflex and oscillation of heart period at 0.1 Hz studied by alpha-blockade and cross-spectral analysis in healthy humans.
    Cevese A; Gulli G; Polati E; Gottin L; Grasso R
    J Physiol; 2001 Feb; 531(Pt 1):235-44. PubMed ID: 11179406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A noninvasive measure of baroreflex sensitivity without blood pressure measurement.
    Davies LC; Colhoun H; Coats AJ; Piepoli M; Francis DP
    Am Heart J; 2002 Mar; 143(3):441-7. PubMed ID: 11868049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of paced breathing on ventilatory and cardiovascular variability parameters during short-term investigations of autonomic function.
    Pinna GD; Maestri R; La Rovere MT; Gobbi E; Fanfulla F
    Am J Physiol Heart Circ Physiol; 2006 Jan; 290(1):H424-33. PubMed ID: 16155106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synchronization between main rhythmic processes in the human cardiovascular system.
    Prokhorov MD; Ponomarenko VI; Gridnev VI; Bodrov MB; Bespyatov AB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 1):041913. PubMed ID: 14682979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased baroreflex sensitivity and heart rate variability in migraine patients.
    Nilsen KB; Tronvik E; Sand T; Gravdahl GB; Stovner LJ
    Acta Neurol Scand; 2009 Dec; 120(6):418-23. PubMed ID: 19456305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of patterned breathing and continuous positive airway pressure on cardiovascular regulation in healthy volunteers.
    Török T; Rudas L; Kardos A; Paprika D
    Acta Physiol Hung; 1997-1998; 85(1):1-10. PubMed ID: 9530431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiovascular regulation during long-duration spaceflights to the International Space Station.
    Hughson RL; Shoemaker JK; Blaber AP; Arbeille P; Greaves DK; Pereira-Junior PP; Xu D
    J Appl Physiol (1985); 2012 Mar; 112(5):719-27. PubMed ID: 22134699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heart rate variability biofeedback decreases blood pressure in prehypertensive subjects by improving autonomic function and baroreflex.
    Lin G; Xiang Q; Fu X; Wang S; Wang S; Chen S; Shao L; Zhao Y; Wang T
    J Altern Complement Med; 2012 Feb; 18(2):143-52. PubMed ID: 22339103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heart Rate and Breathing Are Not Always in Phase During Resonance Frequency Breathing.
    Lehrer PM; Vaschillo EG; Vidali V
    Appl Psychophysiol Biofeedback; 2020 Sep; 45(3):145-152. PubMed ID: 32285231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Abnormal heart rate and blood pressure responses to baroreflex stimulation in multiple sclerosis patients.
    Sanya EO; Tutaj M; Brown CM; Goel N; Neundörfer B; Hilz MJ
    Clin Auton Res; 2005 Jun; 15(3):213-8. PubMed ID: 15944871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.