These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 21143662)
41. Analysis of autofeedback mechanisms in the secretion of pro-opiomelanocortin-derived peptides by melanotrope cells of Xenopus laevis. de Koning HP; Jenks BG; Scheenen WJ; Balm PH; Roubos EW Gen Comp Endocrinol; 1992 Sep; 87(3):394-401. PubMed ID: 1330808 [TBL] [Abstract][Full Text] [Related]
42. Dynamics of proopiomelanocortin and prohormone convertase 2 gene expression in Xenopus melanotrope cells during long-term background adaptation. Dotman CH; van Herp F; Martens GJ; Jenks BG; Roubos EW J Endocrinol; 1998 Nov; 159(2):281-6. PubMed ID: 9795369 [TBL] [Abstract][Full Text] [Related]
43. Cholinergic regulation of the pituitary: autoexcitatory control by acetylcholine of melanotrope cell activity in Xenopus laevis. van Strien FJ; Jenks BG; Vaudry H; Roubos EW Ann N Y Acad Sci; 1998 May; 839():66-73. PubMed ID: 9629132 [TBL] [Abstract][Full Text] [Related]
44. Ca2+ oscillations in melanotropes of Xenopus laevis: their generation, propagation, and function. Jenks BG; Roubos EW; Scheenen WJ Gen Comp Endocrinol; 2003 May; 131(3):209-19. PubMed ID: 12714002 [TBL] [Abstract][Full Text] [Related]
45. Cell type-specific transgene expression of the prion protein in Xenopus intermediate pituitary cells. van Rosmalen JW; Martens GJ FEBS J; 2006 Feb; 273(4):847-62. PubMed ID: 16441670 [TBL] [Abstract][Full Text] [Related]
46. Melanotrope secretory cycle is regulated by physiological inputs via the hypothalamus. Vazquez-Martinez R; Castaño JP; Tonon MC; Vaudry H; Gracia-Navarro F; Malagon MM Am J Physiol Endocrinol Metab; 2003 Nov; 285(5):E1039-46. PubMed ID: 12876074 [TBL] [Abstract][Full Text] [Related]
47. Calcium channel kinetics of melanotrope cells in Xenopus laevis depend on environmental stimulation. Zhang H; Langeslag M; Breukels V; Jenks BG; Roubos EW; Scheenen WJ Gen Comp Endocrinol; 2008 Mar; 156(1):104-12. PubMed ID: 18206885 [TBL] [Abstract][Full Text] [Related]
48. Dynamics of cyclic-AMP efflux in relation to alpha-MSH secretion from melanotrope cells of Xenopus laevis. de Koning HP; Jenks BG; Huchedé B; Roubos EW Life Sci; 1992; 51(21):1667-73. PubMed ID: 1279339 [TBL] [Abstract][Full Text] [Related]
49. Effects of background adaptation on alpha-MSH and beta-endorphin in secretory granule types of melanotrope cells of Xenopus laevis. Roubos EW; Berghs CA Cell Tissue Res; 1993 Dec; 274(3):587-96. PubMed ID: 8293450 [TBL] [Abstract][Full Text] [Related]
50. Signal transduction in Rana melanotrope cells: mechanism of action of neurotensin on secretory and electrical activities. Louiset E; Belmeguenai A; Desrues L; Leprince J; Tonon MC; Vaudry H Ann N Y Acad Sci; 2005 Apr; 1040():131-6. PubMed ID: 15891016 [TBL] [Abstract][Full Text] [Related]
51. Dynamics of glucocorticoid and mineralocorticoid receptors in the Xenopus laevis pituitary pars intermedia. Roubos EW; Kuribara M; Kuipers-Kwant FJ; Coenen TA; Meijer KH; Cruijsen PM; Denver RJ Ann N Y Acad Sci; 2009 Apr; 1163():292-5. PubMed ID: 19456350 [TBL] [Abstract][Full Text] [Related]
52. Localisation and physiological regulation of corticotrophin-releasing factor receptor 1 mRNA in the Xenopus laevis brain and pituitary gland. Calle M; Jenks BG; Corstens GJ; Veening JG; Barendregt HP; Roubos EW J Neuroendocrinol; 2006 Oct; 18(10):797-805. PubMed ID: 16965298 [TBL] [Abstract][Full Text] [Related]
53. Brain distribution and evidence for both central and neurohormonal actions of cocaine- and amphetamine-regulated transcript peptide in Xenopus laevis. Roubos EW; Lázár G; Calle M; Barendregt HP; Gaszner B; Kozicz T J Comp Neurol; 2008 Apr; 507(4):1622-38. PubMed ID: 18220255 [TBL] [Abstract][Full Text] [Related]
54. The extracellular calcium-sensing receptor increases the number of calcium steps and action currents in pituitary melanotrope cells. van den Hurk MJ; Jenks BG; Roubos EW; Scheenen WJ Neurosci Lett; 2005 Mar; 377(2):125-9. PubMed ID: 15740850 [TBL] [Abstract][Full Text] [Related]
55. Dynamics of background adaptation in Xenopus laevis: role of catecholamines and melanophore-stimulating hormone. van Zoest ID; Heijmen PS; Cruijsen PM; Jenks BG Gen Comp Endocrinol; 1989 Oct; 76(1):19-28. PubMed ID: 2599346 [TBL] [Abstract][Full Text] [Related]
56. Physiologically-induced changes in proopiomelanocortin mRNA levels in the pituitary gland of the amphibian Xenopus laevis. Martens GJ; Weterings KA; van Zoest ID; Jenks BG Biochem Biophys Res Commun; 1987 Mar; 143(2):678-84. PubMed ID: 3566743 [TBL] [Abstract][Full Text] [Related]
57. Functional organization of the suprachiasmatic nucleus of Xenopus laevis in relation to background adaptation. Kramer BM; Welting J; Berghs CA; Jenks BG; Roubos EW J Comp Neurol; 2001 Apr; 432(3):346-55. PubMed ID: 11246212 [TBL] [Abstract][Full Text] [Related]
58. Immunocytochemical localization and ontogenic development of alpha-melanocyte-stimulating hormone (alpha-MSH) in the brain of a pleuronectiform fish, barfin flounder. Amano M; Takahashi A; Yamanome T; Oka Y; Amiya N; Kawauchi H; Yamamori K Cell Tissue Res; 2005 Apr; 320(1):127-34. PubMed ID: 15726422 [TBL] [Abstract][Full Text] [Related]
59. Differential effects of dopamine on two frog melanotrope cell subpopulations. González de Aguilar JL; Malagón MM; Vázquez-Martínez RM; Martínez-Fuentes AJ; Tonon MC; Vaudry H; Gracia-Navarro F Endocrinology; 1999 Jan; 140(1):159-64. PubMed ID: 9886821 [TBL] [Abstract][Full Text] [Related]
60. The significance of multiple inhibitory mechanisms converging on the melanotrope cell of Xenopus laevis. Jenks B; Buzzi M; Dotman C; De Koning H; Scheenen W; Lieste J; Leenders H; Cruijsen P; Roubos E Ann N Y Acad Sci; 1998 May; 839():229-34. PubMed ID: 9629157 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]