These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 21143801)

  • 1. Functional data analysis for identifying nonlinear models of gene regulatory networks.
    Summer G; Perkins TJ
    BMC Genomics; 2010 Dec; 11 Suppl 4(Suppl 4):S18. PubMed ID: 21143801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient reverse-engineering of a developmental gene regulatory network.
    Crombach A; Wotton KR; Cicin-Sain D; Ashyraliyev M; Jaeger J
    PLoS Comput Biol; 2012; 8(7):e1002589. PubMed ID: 22807664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inferring gene regulatory networks via nonlinear state-space models and exploiting sparsity.
    Noor A; Serpedin E; Nounou M; Nounou HN
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(4):1203-11. PubMed ID: 22350207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reverse engineering genetic networks using nonlinear saturation kinetics.
    Kizhakkethil Youseph AS; Chetty M; Karmakar G
    Biosystems; 2019 Aug; 182():30-41. PubMed ID: 31185246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. OKVAR-Boost: a novel boosting algorithm to infer nonlinear dynamics and interactions in gene regulatory networks.
    Lim N; Senbabaoglu Y; Michailidis G; d'Alché-Buc F
    Bioinformatics; 2013 Jun; 29(11):1416-23. PubMed ID: 23574736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of parameters in systems biology.
    Abdulla UG; Poteau R
    Math Biosci; 2018 Nov; 305():133-145. PubMed ID: 30217694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reverse engineering the gap gene network of Drosophila melanogaster.
    Perkins TJ; Jaeger J; Reinitz J; Glass L
    PLoS Comput Biol; 2006 May; 2(5):e51. PubMed ID: 16710449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification-Based Inference of Dynamical Models of Gene Regulatory Networks.
    Fehr DA; Handzlik JE; Manu ; Loh YL
    G3 (Bethesda); 2019 Dec; 9(12):4183-4195. PubMed ID: 31624138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient inference of parsimonious phenomenological models of cellular dynamics using S-systems and alternating regression.
    Daniels BC; Nemenman I
    PLoS One; 2015; 10(3):e0119821. PubMed ID: 25806510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computational framework for qualitative simulation of nonlinear dynamical models of gene-regulatory networks.
    Ironi L; Panzeri L
    BMC Bioinformatics; 2009 Oct; 10 Suppl 12(Suppl 12):S14. PubMed ID: 19828074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A geometrical approach to control and controllability of nonlinear dynamical networks.
    Wang LZ; Su RQ; Huang ZG; Wang X; Wang WX; Grebogi C; Lai YC
    Nat Commun; 2016 Apr; 7():11323. PubMed ID: 27076273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Statistical Network Inference for Time-Varying Molecular Data with Dynamic Bayesian Networks.
    Dondelinger F; Mukherjee S
    Methods Mol Biol; 2019; 1883():25-48. PubMed ID: 30547395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene expression complex networks: synthesis, identification, and analysis.
    Lopes FM; Cesar RM; Costa Lda F
    J Comput Biol; 2011 Oct; 18(10):1353-67. PubMed ID: 21548810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying dynamical modules from genetic regulatory systems: applications to the segment polarity network.
    Irons DJ; Monk NA
    BMC Bioinformatics; 2007 Oct; 8():413. PubMed ID: 17961242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstructing nonlinear dynamic models of gene regulation using stochastic sampling.
    Mazur J; Ritter D; Reinelt G; Kaderali L
    BMC Bioinformatics; 2009 Dec; 10():448. PubMed ID: 20038296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Threshold-dominated regulation hides genetic variation in gene expression networks.
    Gjuvsland AB; Plahte E; Omholt SW
    BMC Syst Biol; 2007 Dec; 1():57. PubMed ID: 18062810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Network inference by combining biologically motivated regulatory constraints with penalized regression.
    Parisi F; Koeppl H; Naef F
    Ann N Y Acad Sci; 2009 Mar; 1158():114-24. PubMed ID: 19348637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating time-varying directed gene regulation networks.
    Nie Y; Wang L; Cao J
    Biometrics; 2017 Dec; 73(4):1231-1242. PubMed ID: 28369708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated adaptive inference of phenomenological dynamical models.
    Daniels BC; Nemenman I
    Nat Commun; 2015 Aug; 6():8133. PubMed ID: 26293508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.