These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Comparison of Cellular Morphological Descriptors and Molecular Fingerprints for the Prediction of Cytotoxicity- and Proliferation-Related Assays. Seal S; Yang H; Vollmers L; Bender A Chem Res Toxicol; 2021 Feb; 34(2):422-437. PubMed ID: 33522793 [TBL] [Abstract][Full Text] [Related]
5. Identification of novel MRP3 inhibitors based on computational models and validation using an in vitro membrane vesicle assay. Ali I; Welch MA; Lu Y; Swaan PW; Brouwer KLR Eur J Pharm Sci; 2017 May; 103():52-59. PubMed ID: 28238947 [TBL] [Abstract][Full Text] [Related]
6. Perturbation Theory/Machine Learning Model of ChEMBL Data for Dopamine Targets: Docking, Synthesis, and Assay of New l-Prolyl-l-leucyl-glycinamide Peptidomimetics. Ferreira da Costa J; Silva D; Caamaño O; Brea JM; Loza MI; Munteanu CR; Pazos A; García-Mera X; González-Díaz H ACS Chem Neurosci; 2018 Nov; 9(11):2572-2587. PubMed ID: 29791132 [TBL] [Abstract][Full Text] [Related]
7. Modelling compound cytotoxicity using conformal prediction and PubChem HTS data. Svensson F; Norinder U; Bender A Toxicol Res (Camb); 2017 Jan; 6(1):73-80. PubMed ID: 30090478 [TBL] [Abstract][Full Text] [Related]
8. Improving the prediction of organism-level toxicity through integration of chemical, protein target and cytotoxicity qHTS data. Allen CHG; Koutsoukas A; Cortés-Ciriano I; Murrell DS; Malliavin TE; Glen RC; Bender A Toxicol Res (Camb); 2016 May; 5(3):883-894. PubMed ID: 30090397 [TBL] [Abstract][Full Text] [Related]
9. TOPS-MODE model of multiplexing neuroprotective effects of drugs and experimental-theoretic study of new 1,3-rasagiline derivatives potentially useful in neurodegenerative diseases. Luan F; Cordeiro MN; Alonso N; García-Mera X; Caamaño O; Romero-Duran FJ; Yañez M; González-Díaz H Bioorg Med Chem; 2013 Apr; 21(7):1870-9. PubMed ID: 23415089 [TBL] [Abstract][Full Text] [Related]
10. PTML Model for Selection of Nanoparticles, Anticancer Drugs, and Vitamins in the Design of Drug-Vitamin Nanoparticle Release Systems for Cancer Cotherapy. Santana R; Zuluaga R; Gañán P; Arrasate S; Onieva E; Montemore MM; González-Díaz H Mol Pharm; 2020 Jul; 17(7):2612-2627. PubMed ID: 32459098 [TBL] [Abstract][Full Text] [Related]
11. Analysis of Pfizer compounds in EPA's ToxCast chemicals-assay space. Shah F; Greene N Chem Res Toxicol; 2014 Jan; 27(1):86-98. PubMed ID: 24328225 [TBL] [Abstract][Full Text] [Related]
12. Profile-QSAR: a novel meta-QSAR method that combines activities across the kinase family to accurately predict affinity, selectivity, and cellular activity. Martin E; Mukherjee P; Sullivan D; Jansen J J Chem Inf Model; 2011 Aug; 51(8):1942-56. PubMed ID: 21667971 [TBL] [Abstract][Full Text] [Related]
13. Big Data Challenges Targeting Proteins in GPCR Signaling Pathways; Combining PTML-ChEMBL Models and [ Diez-Alarcia R; Yáñez-Pérez V; Muneta-Arrate I; Arrasate S; Lete E; Meana JJ; González-Díaz H ACS Chem Neurosci; 2019 Nov; 10(11):4476-4491. PubMed ID: 31618004 [TBL] [Abstract][Full Text] [Related]
14. Predictions of BuChE inhibitors using support vector machine and naive Bayesian classification techniques in drug discovery. Fang J; Yang R; Gao L; Zhou D; Yang S; Liu AL; Du GH J Chem Inf Model; 2013 Nov; 53(11):3009-20. PubMed ID: 24144102 [TBL] [Abstract][Full Text] [Related]
15. How Consistent are Publicly Reported Cytotoxicity Data? Large-Scale Statistical Analysis of the Concordance of Public Independent Cytotoxicity Measurements. Cortés-Ciriano I; Bender A ChemMedChem; 2016 Jan; 11(1):57-71. PubMed ID: 26541361 [TBL] [Abstract][Full Text] [Related]
16. Predicting the cytotoxicity of chemicals using ensemble learning methods and molecular fingerprints. Yin Z; Ai H; Zhang L; Ren G; Wang Y; Zhao Q; Liu H J Appl Toxicol; 2019 Oct; 39(10):1366-1377. PubMed ID: 30763981 [TBL] [Abstract][Full Text] [Related]