BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 21143960)

  • 1. Computer simulations of neural mechanisms explaining upper and lower limb excitatory neural coupling.
    Huang HJ; Ferris DP
    J Neuroeng Rehabil; 2010 Dec; 7():59. PubMed ID: 21143960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interlimb neural coupling: implications for poststroke hemiparesis.
    Arya KN; Pandian S
    Ann Phys Rehabil Med; 2014 Dec; 57(9-10):696-713. PubMed ID: 25262645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions between Dorsal and Ventral Root Stimulation on the Generation of Locomotor-Like Activity in the Neonatal Mouse Spinal Cord.
    Pujala A; Blivis D; O'Donovan MJ
    eNeuro; 2016; 3(3):. PubMed ID: 27419215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Left-Right Locomotor Coordination in Human Neonates.
    Dewolf AH; La Scaleia V; Fabiano A; Sylos-Labini F; Mondi V; Picone S; Di Paolo A; Paolillo P; Ivanenko Y; Lacquaniti F
    J Neurosci; 2022 Aug; 42(34):6566-6580. PubMed ID: 35831172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interlimb neural interactions in corticospinal and spinal reflex circuits during preparation and execution of isometric elbow flexion.
    Sasaki A; Kaneko N; Masugi Y; Milosevic M; Nakazawa K
    J Neurophysiol; 2020 Sep; 124(3):652-667. PubMed ID: 32697605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Locomotor rhythmogenesis in the isolated rat spinal cord: a phase-coupled set of symmetrical flexion extension oscillators.
    Juvin L; Simmers J; Morin D
    J Physiol; 2007 Aug; 583(Pt 1):115-28. PubMed ID: 17569737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling the neural and physical dynamics in rhythmic movements.
    Hatsopoulos NG
    Neural Comput; 1996 Apr; 8(3):567-81. PubMed ID: 8868568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy efficient and robust rhythmic limb movement by central pattern generators.
    Verdaasdonk BW; Koopman HF; Helm FC
    Neural Netw; 2006 May; 19(4):388-400. PubMed ID: 16352419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. State-dependent rhythmogenesis and frequency control in a half-center locomotor CPG.
    Ausborn J; Snyder AC; Shevtsova NA; Rybak IA; Rubin JE
    J Neurophysiol; 2018 Jan; 119(1):96-117. PubMed ID: 28978767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interlimb coupling from the arms to legs is differentially specified for populations of motor units comprising the compound H-reflex during "reduced" human locomotion.
    Mezzarane RA; Klimstra M; Lewis A; Hundza SR; Zehr EP
    Exp Brain Res; 2011 Jan; 208(2):157-68. PubMed ID: 21063693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resonance tuning in a neuro-musculo-skeletal model of the forearm.
    Verdaasdonk BW; Koopman HF; Van der Helm FC
    Biol Cybern; 2007 Feb; 96(2):165-80. PubMed ID: 17077977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modular organization of the multipartite central pattern generator for turtle rostral scratch: knee-related interneurons during deletions.
    Stein PS; Daniels-McQueen S; Lai J; Liu Z; Corman TS
    J Neurophysiol; 2016 Jun; 115(6):3130-9. PubMed ID: 27030737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shaping appropriate locomotive motor output through interlimb neural pathway within spinal cord in humans.
    Kawashima N; Nozaki D; Abe MO; Nakazawa K
    J Neurophysiol; 2008 Jun; 99(6):2946-55. PubMed ID: 18450579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensory enhancement amplifies interlimb cutaneous reflexes in wrist extensor muscles.
    Sun Y; Zehr EP
    J Neurophysiol; 2019 Nov; 122(5):2085-2094. PubMed ID: 31509473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetric operation of the locomotor central pattern generator in the neonatal mouse spinal cord.
    Endo T; Kiehn O
    J Neurophysiol; 2008 Dec; 100(6):3043-54. PubMed ID: 18829847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Presynaptic control of transmission along the pathway mediating disynaptic reciprocal inhibition in the cat.
    EnrĂ­quez-Denton M; Nielsen J; Perreault MC; Morita H; Petersen N; Hultborn H
    J Physiol; 2000 Aug; 526 Pt 3(Pt 3):623-37. PubMed ID: 10922013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synchrony of hand-foot coupled movements: is it attained by mutual feedback entrainment or by independent linkage of each limb to a common rhythm generator?
    Baldissera FG; Cavallari P; Esposti R
    BMC Neurosci; 2006 Oct; 7():70. PubMed ID: 17067367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shaping the Output of Lumbar Flexor Motoneurons by Sacral Neuronal Networks.
    Cherniak M; Anglister L; Lev-Tov A
    J Neurosci; 2017 Feb; 37(5):1294-1311. PubMed ID: 28025254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensory feedback mechanism underlying entrainment of central pattern generator to mechanical resonance.
    Iwasaki T; Zheng M
    Biol Cybern; 2006 Apr; 94(4):245-61. PubMed ID: 16404611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of velocity on upper to lower extremity muscular work and power output ratios of intercollegiate athletes.
    Charteris J
    Br J Sports Med; 1999 Aug; 33(4):250-4. PubMed ID: 10450479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.