These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
512 related articles for article (PubMed ID: 21145597)
1. A case for regulatory B cells in controlling the severity of autoimmune-mediated inflammation in experimental autoimmune encephalomyelitis and multiple sclerosis. Ray A; Mann MK; Basu S; Dittel BN J Neuroimmunol; 2011 Jan; 230(1-2):1-9. PubMed ID: 21145597 [TBL] [Abstract][Full Text] [Related]
2. Lessons from multiple sclerosis: models, concepts, observations. Wekerle H Ann Rheum Dis; 2008 Dec; 67 Suppl 3():iii56-60. PubMed ID: 19022815 [TBL] [Abstract][Full Text] [Related]
3. B-cell activation influences T-cell polarization and outcome of anti-CD20 B-cell depletion in central nervous system autoimmunity. Weber MS; Prod'homme T; Patarroyo JC; Molnarfi N; Karnezis T; Lehmann-Horn K; Danilenko DM; Eastham-Anderson J; Slavin AJ; Linington C; Bernard CC; Martin F; Zamvil SS Ann Neurol; 2010 Sep; 68(3):369-83. PubMed ID: 20641064 [TBL] [Abstract][Full Text] [Related]
4. CAR-T Cell-Mediated B-Cell Depletion in Central Nervous System Autoimmunity. Gupta S; Simic M; Sagan SA; Shepherd C; Duecker J; Sobel RA; Dandekar R; Wu GF; Wu W; Pak JE; Hauser SL; Lim W; Wilson MR; Zamvil SS Neurol Neuroimmunol Neuroinflamm; 2023 Mar; 10(2):. PubMed ID: 36657993 [TBL] [Abstract][Full Text] [Related]
5. Efficient Distribution of a Novel Zirconium-89 Labeled Anti-cd20 Antibody Following Subcutaneous and Intravenous Administration in Control and Experimental Autoimmune Encephalomyelitis-Variant Mice. Migotto MA; Mardon K; Orian J; Weckbecker G; Kneuer R; Bhalla R; Reutens DC Front Immunol; 2019; 10():2437. PubMed ID: 31681317 [No Abstract] [Full Text] [Related]
6. Changes of B cell subsets in central pathological process of autoimmune encephalomyelitis in mice. Xiong Y; Cheng S; Wu X; Ren Y; Xie X BMC Immunol; 2019 Jul; 20(1):24. PubMed ID: 31286875 [TBL] [Abstract][Full Text] [Related]
7. Role of Mast Cells in the Pathogenesis of Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. Elieh-Ali-Komi D; Cao Y Clin Rev Allergy Immunol; 2017 Jun; 52(3):436-445. PubMed ID: 28025778 [TBL] [Abstract][Full Text] [Related]
8. Dysregulated follicular regulatory T cells and antibody responses exacerbate experimental autoimmune encephalomyelitis. Luo L; Hu X; Dixon ML; Pope BJ; Leavenworth JD; Raman C; Meador WR; Leavenworth JW J Neuroinflammation; 2021 Jan; 18(1):27. PubMed ID: 33468194 [TBL] [Abstract][Full Text] [Related]
9. Astrocytes in multiple sclerosis and experimental autoimmune encephalomyelitis: Star-shaped cells illuminating the darkness of CNS autoimmunity. Yi W; Schlüter D; Wang X Brain Behav Immun; 2019 Aug; 80():10-24. PubMed ID: 31125711 [TBL] [Abstract][Full Text] [Related]
10. Emerging role of IL-16 in cytokine-mediated regulation of multiple sclerosis. Skundric DS; Cruikshank WW; Montgomery PC; Lisak RP; Tse HY Cytokine; 2015 Oct; 75(2):234-48. PubMed ID: 25703787 [TBL] [Abstract][Full Text] [Related]
11. Effector and regulatory B cells in Multiple Sclerosis. Staun-Ram E; Miller A Clin Immunol; 2017 Nov; 184():11-25. PubMed ID: 28461106 [TBL] [Abstract][Full Text] [Related]
12. Chronological changes of CD4(+) and CD8(+) T cell subsets in the experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis. Sonobe Y; Jin S; Wang J; Kawanokuchi J; Takeuchi H; Mizuno T; Suzumura A Tohoku J Exp Med; 2007 Dec; 213(4):329-39. PubMed ID: 18075237 [TBL] [Abstract][Full Text] [Related]
13. Depletion of CD52-positive cells inhibits the development of central nervous system autoimmune disease, but deletes an immune-tolerance promoting CD8 T-cell population. Implications for secondary autoimmunity of alemtuzumab in multiple sclerosis. von Kutzleben S; Pryce G; Giovannoni G; Baker D Immunology; 2017 Apr; 150(4):444-455. PubMed ID: 27925187 [TBL] [Abstract][Full Text] [Related]
14. CD20 therapies in multiple sclerosis and experimental autoimmune encephalomyelitis - Targeting T or B cells? Agahozo MC; Peferoen L; Baker D; Amor S Mult Scler Relat Disord; 2016 Sep; 9():110-7. PubMed ID: 27645355 [TBL] [Abstract][Full Text] [Related]
15. Pathogenic and regulatory roles for B cells in experimental autoimmune encephalomyelitis. Mann MK; Ray A; Basu S; Karp CL; Dittel BN Autoimmunity; 2012 Aug; 45(5):388-99. PubMed ID: 22443691 [TBL] [Abstract][Full Text] [Related]
16. Platelets in Multiple Sclerosis: Early and Central Mediators of Inflammation and Neurodegeneration and Attractive Targets for Molecular Imaging and Site-Directed Therapy. Orian JM; D'Souza CS; Kocovski P; Krippner G; Hale MW; Wang X; Peter K Front Immunol; 2021; 12():620963. PubMed ID: 33679764 [TBL] [Abstract][Full Text] [Related]
17. Susceptibility to experimental autoimmune encephalomyelitis is associated with altered B-cell subsets distribution and decreased serum BAFF levels. Lee-Chang C; Lefranc D; Salleron J; Faveeuw C; Allet C; Vermersch P; Oxombre B; Prin L Immunol Lett; 2011 Mar; 135(1-2):108-17. PubMed ID: 20946917 [TBL] [Abstract][Full Text] [Related]
18. The role of CD8 suppressors versus destructors in autoimmune central nervous system inflammation. Zozulya AL; Wiendl H Hum Immunol; 2008 Nov; 69(11):797-804. PubMed ID: 18723060 [TBL] [Abstract][Full Text] [Related]
19. Characterization of Definitive Regulatory B Cell Subsets by Cell Surface Phenotype, Function and Context. Neu SD; Dittel BN Front Immunol; 2021; 12():787464. PubMed ID: 34987513 [TBL] [Abstract][Full Text] [Related]
20. New Insights into the Role of IL-1β in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. Lin CC; Edelson BT J Immunol; 2017 Jun; 198(12):4553-4560. PubMed ID: 28583987 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]