These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 21145864)

  • 1. Nitric oxide mimics transcriptional and post-translational regulation during α-tocopherol cytoprotection against glycochenodeoxycholate-induced cell death in hepatocytes.
    González R; Cruz A; Ferrín G; López-Cillero P; Fernández-Rodríguez R; Briceño J; Gómez MA; Rufián S; Mata Mde L; Martínez-Ruiz A; Marin JJ; Muntané J
    J Hepatol; 2011 Jul; 55(1):133-44. PubMed ID: 21145864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytoprotective properties of rifampicin are related to the regulation of detoxification system and bile acid transporter expression during hepatocellular injury induced by hydrophobic bile acids.
    González R; Cruz A; Ferrín G; López-Cillero P; Briceño J; Gómez MA; Rufián S; Padillo J; De la Mata M; Marin JJ; Muntané J
    J Hepatobiliary Pancreat Sci; 2011 Sep; 18(5):740-50. PubMed ID: 21526375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium-dependent nitric oxide production is involved in the cytoprotective properties of n-acetylcysteine in glycochenodeoxycholic acid-induced cell death in hepatocytes.
    González-Rubio S; Linares CI; Bello RI; González R; Ferrín G; Hidalgo AB; Muñoz-Gomariz E; Rodríguez BA; Barrera P; Ranchal I; Durán-Prado M; Aguilar-Melero P; De la Mata M; Muntané J
    Toxicol Appl Pharmacol; 2010 Jan; 242(2):165-72. PubMed ID: 19837105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential inhibition of rat and human Na+-dependent taurocholate cotransporting polypeptide (NTCP/SLC10A1)by bosentan: a mechanism for species differences in hepatotoxicity.
    Leslie EM; Watkins PB; Kim RB; Brouwer KL
    J Pharmacol Exp Ther; 2007 Jun; 321(3):1170-8. PubMed ID: 17374746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial-driven ubiquinone enhances extracellular calcium-dependent nitric oxide production and reduces glycochenodeoxycholic acid-induced cell death in hepatocytes.
    González-Rubio S; Hidalgo AB; Ferrín G; Bello RI; González R; Gahete MD; Ranchal I; Rodríguez BA; Barrera P; Aguilar-Melero P; Linares CI; Castaño JP; Victor VM; De la Mata M; Muntané J
    Chem Res Toxicol; 2009 Dec; 22(12):1984-91. PubMed ID: 20020783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A GAPDH-mediated trans-nitrosylation pathway is required for feedback inhibition of bile salt synthesis in rat liver.
    Rodríguez-Ortigosa CM; Celay J; Olivas I; Juanarena N; Arcelus S; Uriarte I; Marín JJ; Avila MA; Medina JF; Prieto J
    Gastroenterology; 2014 Nov; 147(5):1084-93. PubMed ID: 25066374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of fluvastatin with the liver-specific Na+ -dependent taurocholate cotransporting polypeptide (NTCP).
    Greupink R; Dillen L; Monshouwer M; Huisman MT; Russel FG
    Eur J Pharm Sci; 2011 Nov; 44(4):487-96. PubMed ID: 21945488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anti-oxidants do not prevent bile acid-induced cell death in rat hepatocytes.
    Woudenberg-Vrenken TE; Buist-Homan M; Conde de la Rosa L; Faber KN; Moshage H
    Liver Int; 2010 Nov; 30(10):1511-21. PubMed ID: 20825559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytoprotective properties of alpha-tocopherol are related to gene regulation in cultured D-galactosamine-treated human hepatocytes.
    González R; Collado JA; Nell S; Briceño J; Tamayo MJ; Fraga E; Bernardos A; López-Cillero P; Pascussi JM; Rufián S; Vilarem MJ; De la Mata M; Brigelius-Flohe R; Maurel P; Muntané J
    Free Radic Biol Med; 2007 Nov; 43(10):1439-52. PubMed ID: 17936189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Melatonin protects hepatocytes against bile acid-induced mitochondrial oxidative stress via the AMPK-SIRT3-SOD2 pathway.
    Chen Y; Qing W; Sun M; Lv L; Guo D; Jiang Y
    Free Radic Res; 2015 Oct; 49(10):1275-84. PubMed ID: 26118716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of Glycochenodeoxycholate Sulfate and Chenodeoxycholate Glucuronide as Surrogate Endogenous Probes for Drug Interaction Studies of OATP1B1 and OATP1B3 in Healthy Japanese Volunteers.
    Takehara I; Terashima H; Nakayama T; Yoshikado T; Yoshida M; Furihata K; Watanabe N; Maeda K; Ando O; Sugiyama Y; Kusuhara H
    Pharm Res; 2017 Aug; 34(8):1601-1614. PubMed ID: 28550384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitric oxide-mediated inhibition of taurocholate uptake involves S-nitrosylation of NTCP.
    Schonhoff CM; Ramasamy U; Anwer MS
    Am J Physiol Gastrointest Liver Physiol; 2011 Feb; 300(2):G364-70. PubMed ID: 21109590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drug and bile acid transporters in rosuvastatin hepatic uptake: function, expression, and pharmacogenetics.
    Ho RH; Tirona RG; Leake BF; Glaeser H; Lee W; Lemke CJ; Wang Y; Kim RB
    Gastroenterology; 2006 May; 130(6):1793-806. PubMed ID: 16697742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protective Effects of Alisol B 23-Acetate Via Farnesoid X Receptor-Mediated Regulation of Transporters and Enzymes in Estrogen-Induced Cholestatic Liver Injury in Mice.
    Meng Q; Chen X; Wang C; Liu Q; Sun H; Sun P; Huo X; Liu Z; Yao J; Liu K
    Pharm Res; 2015 Nov; 32(11):3688-98. PubMed ID: 26040663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of Plasma Membrane Localization of the Na⁺-Taurocholate Co-Transporting Polypeptide by Glycochenodeoxycholate and Tauroursodeoxycholate.
    Mayer PGK; Qvartskhava N; Sommerfeld A; Görg B; Häussinger D
    Cell Physiol Biochem; 2019; 52(6):1427-1445. PubMed ID: 31088037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Bile Acid-Dependent Mechanisms of Hepatotoxicity Associated with Tyrosine Kinase Inhibitors.
    Saran C; Sundqvist L; Ho H; Niskanen J; Honkakoski P; Brouwer KLR
    J Pharmacol Exp Ther; 2022 Feb; 380(2):114-125. PubMed ID: 34794962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of plasma membrane localization of the Na+-taurocholate cotransporting polypeptide (Ntcp) by hyperosmolarity and tauroursodeoxycholate.
    Sommerfeld A; Mayer PG; Cantore M; Häussinger D
    J Biol Chem; 2015 Oct; 290(40):24237-54. PubMed ID: 26306036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hepatitis B and D viruses exploit sodium taurocholate co-transporting polypeptide for species-specific entry into hepatocytes.
    Ni Y; Lempp FA; Mehrle S; Nkongolo S; Kaufman C; Fälth M; Stindt J; Königer C; Nassal M; Kubitz R; Sültmann H; Urban S
    Gastroenterology; 2014 Apr; 146(4):1070-83. PubMed ID: 24361467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cysteine 96 of Ntcp is responsible for NO-mediated inhibition of taurocholate uptake.
    Ramasamy U; Anwer MS; Schonhoff CM
    Am J Physiol Gastrointest Liver Physiol; 2013 Oct; 305(7):G513-9. PubMed ID: 23886862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein kinase C induces endocytosis of the sodium taurocholate cotransporting polypeptide.
    Stross C; Helmer A; Weissenberger K; Görg B; Keitel V; Häussinger D; Kubitz R
    Am J Physiol Gastrointest Liver Physiol; 2010 Aug; 299(2):G320-8. PubMed ID: 20539008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.