These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 21145955)

  • 21. A novel tool for the prediction of tablet sticking during high speed compaction.
    Abdel-Hamid S; Betz G
    Pharm Dev Technol; 2012; 17(6):747-54. PubMed ID: 21563986
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Discrete particle modeling and micromechanical characterization of bilayer tablet compaction.
    Yohannes B; Gonzalez M; Abebe A; Sprockel O; Nikfar F; Kiang S; Cuitiño AM
    Int J Pharm; 2017 Aug; 529(1-2):597-607. PubMed ID: 28713000
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Study of radial die-wall pressure changes during pharmaceutical powder compaction.
    Abdel-Hamid S; Betz G
    Drug Dev Ind Pharm; 2011 Apr; 37(4):387-95. PubMed ID: 21446827
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A comparison between two powder compaction parameters of plasticity: the effective medium A parameter and the Heckel 1/K parameter.
    Mahmoodi F; Klevan I; Nordström J; Alderborn G; Frenning G
    Int J Pharm; 2013 Sep; 453(2):295-9. PubMed ID: 23810817
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predicting the tensile strength of compacted multi-component mixtures of pharmaceutical powders.
    Wu CY; Best SM; Bentham AC; Hancock BC; Bonfield W
    Pharm Res; 2006 Aug; 23(8):1898-905. PubMed ID: 16850273
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of the material and tablet formation properties of modified forms of Dioscorea starches.
    Odeku OA; Picker-Freyer KM
    Drug Dev Ind Pharm; 2009 Nov; 35(11):1389-406. PubMed ID: 19832640
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prediction of Air Entrapment in Tableting: An Approximate Solution.
    Zavaliangos A; Katz JM; Daurio D; Johnson M; Pirjanian A; Alvarez-Nunez F
    J Pharm Sci; 2017 Dec; 106(12):3604-3612. PubMed ID: 28919383
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differences between eccentric and rotary tablet machines in the evaluation of powder densification behaviour.
    Palmieri GF; Joiris E; Bonacucina G; Cespi M; Mercuri A
    Int J Pharm; 2005 Jul; 298(1):164-75. PubMed ID: 15951144
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of true density, compacted mass, compression speed, and punch deformation on the mean yield pressure.
    Gabaude CM; Guillot M; Gautier JC; Saudemon P; Chulia D
    J Pharm Sci; 1999 Jul; 88(7):725-30. PubMed ID: 10393572
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Linked experimental and modelling approaches for tablet property predictions.
    Jolliffe HG; Ojo E; Mendez C; Houson I; Elkes R; Reynolds G; Kong A; Meehan E; Becker FA; Piccione PM; Verma S; Singaraju A; Halbert G; Robertson J
    Int J Pharm; 2022 Oct; 626():122116. PubMed ID: 35987318
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantification of the compactibility of pharmaceutical powders.
    Sonnergaard JM
    Eur J Pharm Biopharm; 2006 Jul; 63(3):270-7. PubMed ID: 16682176
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A quality by design approach to investigate the effect of mannitol and dicalcium phosphate qualities on roll compaction.
    Souihi N; Dumarey M; Wikström H; Tajarobi P; Fransson M; Svensson O; Josefson M; Trygg J
    Int J Pharm; 2013 Apr; 447(1-2):47-61. PubMed ID: 23434544
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Roll compaction/dry granulation: effect of raw material particle size on granule and tablet properties.
    Herting MG; Kleinebudde P
    Int J Pharm; 2007 Jun; 338(1-2):110-8. PubMed ID: 17324537
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Receiver operating characteristic analysis for the selection of threshold values for detection of capping in powder compression.
    Joe Au YH; Eissa S; Jones BE
    Ultrasonics; 2004 Apr; 42(1-9):149-53. PubMed ID: 15047277
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using compression calorimetry to characterize powder compaction behavior of pharmaceutical materials.
    Buckner IS; Friedman RA; Wurster DE
    J Pharm Sci; 2010 Feb; 99(2):861-70. PubMed ID: 19653279
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tableting and tablet properties of alginates: characterisation and potential for Soft Tableting.
    Schmid W; Picker-Freyer KM
    Eur J Pharm Biopharm; 2009 May; 72(1):165-72. PubMed ID: 18992337
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Benefits of die-wall instrumentation for research and development in tabletting.
    Doelker E; Massuelle D
    Eur J Pharm Biopharm; 2004 Sep; 58(2):427-44. PubMed ID: 15296965
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impact of alternative solid state forms and specific surface area of high-dose, hydrophilic active pharmaceutical ingredients on tabletability.
    Paluch KJ; Tajber L; Corrigan OI; Healy AM
    Mol Pharm; 2013 Oct; 10(10):3628-39. PubMed ID: 23961942
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improving the compaction properties of roller compacted calcium carbonate.
    Bacher C; Olsen PM; Bertelsen P; Kristensen J; Sonnergaard JM
    Int J Pharm; 2007 Sep; 342(1-2):115-23. PubMed ID: 17582712
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling the Air Pressure Increase Within a Powder Bed During Compression-A Step Toward Understanding Tablet Defects.
    Klinzing GR; Troup GM
    J Pharm Sci; 2019 Jun; 108(6):1991-2001. PubMed ID: 30639739
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.