These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 21145959)

  • 1. Adsorption behavior of epirubicin hydrochloride on carboxylated carbon nanotubes.
    Chen Z; Pierre D; He H; Tan S; Pham-Huy C; Hong H; Huang J
    Int J Pharm; 2011 Feb; 405(1-2):153-61. PubMed ID: 21145959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Adsorption and release behavior of epirubicin hydrochloride on carboxylated single-walled carbon nanotubes].
    Lin R; Li LL; He J; Qiu LL; He H
    Yao Xue Xue Bao; 2013 Nov; 48(11):1710-5. PubMed ID: 24475710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption behavior of pazufloxacin mesilate on amino-functionalized carbon nanotubes.
    Jiang L; Liu T; He H; Pham-Huy LA; Li L; Pham-Huy C; Xiao D
    J Nanosci Nanotechnol; 2012 Sep; 12(9):7271-9. PubMed ID: 23035463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption equilibrium of sulfur hexafluoride on multi-walled carbon nanotubes.
    Chiang YC; Wu PY
    J Hazard Mater; 2010 Jun; 178(1-3):729-38. PubMed ID: 20185236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of synthetic organic chemicals by carbon nanotubes: Effects of background solution chemistry.
    Zhang S; Shao T; Bekaroglu SS; Karanfil T
    Water Res; 2010 Mar; 44(6):2067-74. PubMed ID: 20071001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption uptake of synthetic organic chemicals by carbon nanotubes and activated carbons.
    Brooks AJ; Lim HN; Kilduff JE
    Nanotechnology; 2012 Jul; 23(29):294008. PubMed ID: 22743805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Study on the release and mechanism of carbon nanotubes loaded with verapamil hydrochloride in vitro].
    Wang J; Wang YJ; Ran R; Liu YF; Zheng CL; Jiang LQ; Zhu JB
    Zhong Yao Cai; 2012 Sep; 35(9):1500-7. PubMed ID: 23451507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption of ionizable organic contaminants on multi-walled carbon nanotubes with different oxygen contents.
    Li X; Zhao H; Quan X; Chen S; Zhang Y; Yu H
    J Hazard Mater; 2011 Feb; 186(1):407-15. PubMed ID: 21115219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and pre-concentration of basic proteins in aqueous mixture via solid-phase extraction with multi-walled carbon nanotubes assembled on a silica surface.
    Du Z; Yu YL; Yan XR; Wang JH
    Analyst; 2008 Oct; 133(10):1373-9. PubMed ID: 18810285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The targeted delivery of anticancer drugs to brain glioma by PEGylated oxidized multi-walled carbon nanotubes modified with angiopep-2.
    Ren J; Shen S; Wang D; Xi Z; Guo L; Pang Z; Qian Y; Sun X; Jiang X
    Biomaterials; 2012 Apr; 33(11):3324-33. PubMed ID: 22281423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of nickel ions from water by multi-walled carbon nanotubes.
    Kandah MI; Meunier JL
    J Hazard Mater; 2007 Jul; 146(1-2):283-8. PubMed ID: 17196328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Studies on fluorescent properties of multi-walled carbon nanotubes before and after concentrated nitric acid treatment].
    Sun WX; Huang ZP; Zhang L; Zhu J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Jan; 25(1):10-2. PubMed ID: 15852806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of fulvic acid by carbon nanotubes from water.
    Yang K; Xing B
    Environ Pollut; 2009 Apr; 157(4):1095-100. PubMed ID: 19084305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and characteristics of protein molecularly imprinted membranes on the surface of multiwalled carbon nanotubes.
    Zhang M; Huang J; Yu P; Chen X
    Talanta; 2010 Apr; 81(1-2):162-6. PubMed ID: 20188903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-temperature growth of single-walled carbon nanotubes by water plasma chemical vapor deposition.
    Min YS; Bae EJ; Oh BS; Kang D; Park W
    J Am Chem Soc; 2005 Sep; 127(36):12498-9. PubMed ID: 16144391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon nanotubes for transdermal drug delivery.
    Degim IT; Burgess DJ; Papadimitrakopoulos F
    J Microencapsul; 2010; 27(8):669-81. PubMed ID: 20690793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of aromatic compounds by carbonaceous adsorbents: a comparative study on granular activated carbon, activated carbon fiber, and carbon nanotubes.
    Zhang S; Shao T; Kose HS; Karanfil T
    Environ Sci Technol; 2010 Aug; 44(16):6377-83. PubMed ID: 20704238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Norfloxacin sorption and its thermodynamics on surface-modified carbon nanotubes.
    Wang Z; Yu X; Pan B; Xing B
    Environ Sci Technol; 2010 Feb; 44(3):978-84. PubMed ID: 20030389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Delivery of paclitaxel by physically loading onto poly(ethylene glycol) (PEG)-graft-carbon nanotubes for potent cancer therapeutics.
    Lay CL; Liu HQ; Tan HR; Liu Y
    Nanotechnology; 2010 Feb; 21(6):065101. PubMed ID: 20057024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-walled carbon nanotubes as adsorbents for the removal of parts per billion levels of hexavalent chromium from aqueous solution.
    Pillay K; Cukrowska EM; Coville NJ
    J Hazard Mater; 2009 Jul; 166(2-3):1067-75. PubMed ID: 19157694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.