BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 21146266)

  • 1. Influence of growth modulation on the effective permeability of the vertebral end plate. A porcine experimental scoliosis model.
    Accadbled F; Laffosse JM; Odent T; Gomez-Brouchet A; Sales de Gauzy J; Swider P
    Clin Biomech (Bristol, Avon); 2011 May; 26(4):337-42. PubMed ID: 21146266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A measurement technique to evaluate the macroscopic permeability of the vertebral end-plate.
    Accadbled F; Ambard D; de Gauzy JS; Swider P
    Med Eng Phys; 2008 Jan; 30(1):116-22. PubMed ID: 17446114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remodelling of vertebral endplate subchondral bone in scoliosis: a micro-CT analysis in a porcine model.
    Laffosse JM; Accadbled F; Bonnevialle N; Gomez-Brouchet A; de Gauzy JS; Swider P
    Clin Biomech (Bristol, Avon); 2010 Aug; 25(7):636-41. PubMed ID: 20605291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone mineral density of lumbar vertebral end plates in the aging male sand rat spine.
    Gruber HE; Gordon B; Williams C; James Norton H; Hanley EN
    Spine (Phila Pa 1976); 2003 Aug; 28(16):1766-72. PubMed ID: 12923461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of location, fluid flow direction, and tissue maturity on the macroscopic permeability of vertebral end plates.
    Accadbled F; Laffosse JM; Ambard D; Gomez-Brouchet A; de Gauzy JS; Swider P
    Spine (Phila Pa 1976); 2008 Mar; 33(6):612-9. PubMed ID: 18344854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth plate chondrocyte enlargement modulated by mechanical loading.
    Stokes IA; Mente PL; Iatridis JC; Farnum CE; Aronsson DD
    Stud Health Technol Inform; 2002; 88():378-81. PubMed ID: 15456065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical analysis of rotational motions after disc arthroplasty: implications for patients with adult deformities.
    McAfee PC; Cunningham BW; Hayes V; Sidiqi F; Dabbah M; Sefter JC; Hu N; Beatson H
    Spine (Phila Pa 1976); 2006 Sep; 31(19 Suppl):S152-60. PubMed ID: 16946633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stress distribution in the intervertebral disc correlates with strength distribution in subdiscal trabecular bone in the porcine lumbar spine.
    Ryan G; Pandit A; Apatsidis D
    Clin Biomech (Bristol, Avon); 2008 Aug; 23(7):859-69. PubMed ID: 18423954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of cell death and vertebral end plate bone mineral density in the annulus of the aging sand rat.
    Gruber HE; Gordon B; Norton HJ; Kilburn J; Williams C; Zinchenko N; Heath J; Ingram J; Hanley EN
    Spine J; 2008; 8(3):475-81. PubMed ID: 18455112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanics and validation of an in vivo device to apply torsional loading to caudal vertebrae.
    Rizza R; Liu X
    J Biomech Eng; 2013 Aug; 135(8):81003. PubMed ID: 23722167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of implant size and device keel on vertebral compression properties in lumbar total disc replacement.
    Auerbach JD; Ballester CM; Hammond F; Carine ET; Balderston RA; Elliott DM
    Spine J; 2010 Apr; 10(4):333-40. PubMed ID: 20362251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two in vivo surgical approaches for lumbar corpectomy using allograft and a metallic implant: a controlled clinical and biomechanical study.
    Huang P; Gupta MC; Sarigul-Klijn N; Hazelwood S
    Spine J; 2006; 6(6):648-58. PubMed ID: 17088195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement and analyses of the effects of adjacent end plate curvatures on vertebral stresses.
    Langrana NA; Kale SP; Edwards WT; Lee CK; Kopacz KJ
    Spine J; 2006; 6(3):267-78. PubMed ID: 16651220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of fluid-flow direction on effective permeability of the vertebral end plate: an analytical model.
    Swider P; Accadbled F; Laffosse JM; Sales de Gauzy J
    Comput Methods Biomech Biomed Engin; 2012; 15(2):151-6. PubMed ID: 21082460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interdependence of lumbar disc and subdiscal bone properties: a report of the normal and degenerated spine.
    Keller TS; Ziv I; Moeljanto E; Spengler DM
    J Spinal Disord; 1993 Apr; 6(2):106-13. PubMed ID: 8504221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclically controlled vertebral body tethering for scoliosis: an in vivo verification in a pig model of the pressure exerted on vertebral end plates.
    Lalande V; Villemure I; Vonthron M; Parent S; Aubin CÉ
    Spine Deform; 2020 Feb; 8(1):39-44. PubMed ID: 31981151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of staple on growth rate of vertebral growth plates in goat scoliosis].
    Song D; Meng C; Zheng G; Zhang W; Zhang R; Bai L; Zhang Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2009 Jan; 23(1):72-5. PubMed ID: 19192884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New rod-plate anterior instrumentation for thoracolumbar/lumbar scoliosis: biomechanical evaluation compared with dual-rod and single-rod with structural interbody support.
    Zhang H; Johnston CE; Pierce WA; Ashman RB; Bronson DG; Haideri NF
    Spine (Phila Pa 1976); 2006 Dec; 31(25):E934-40. PubMed ID: 17139209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of remodeling and asymmetric growth in vertebral wedging.
    Aronsson DD; Stokes IA; McBride C
    Stud Health Technol Inform; 2010; 158():11-5. PubMed ID: 20543392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies of the lumbar vertebral end-plate region in the pig.
    Törner M; Holm S
    Ups J Med Sci; 1985; 90(3):243-58. PubMed ID: 4095820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.