These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 21146301)

  • 1. Photo-enhanced field emission study of TiO2 nanotubes array.
    Chavan PG; Shende SV; Joag DS; More MA
    Ultramicroscopy; 2011 May; 111(6):415-20. PubMed ID: 21146301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of single crystalline CdS nanocombs and their application in photo-sensitive field emission switches.
    Chavan PG; Badadhe SS; Mulla IS; More MA; Joag DS
    Nanoscale; 2011 Mar; 3(3):1078-83. PubMed ID: 21173989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The fabrication of highly ordered and visible-light-responsive Fe-C-N-codoped TiO2 nanotubes.
    Isimjan TT; Ruby AE; Rohani S; Ray AK
    Nanotechnology; 2010 Feb; 21(5):055706. PubMed ID: 20023311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced photoluminescence and field-emission behavior of vertically well aligned arrays of In-doped ZnO Nanowires.
    Ahmad M; Sun H; Zhu J
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):1299-305. PubMed ID: 21410190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemically assisted photocatalytic degradation of 4-chlorophenol by ZnFe2O4-modified TiO2 nanotube array electrode under visible light irradiation.
    Hou Y; Li X; Zhao Q; Quan X; Chen G
    Environ Sci Technol; 2010 Jul; 44(13):5098-103. PubMed ID: 20527761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Doped TiO2 and TiO2 nanotubes: synthesis and applications.
    Nah YC; Paramasivam I; Schmuki P
    Chemphyschem; 2010 Sep; 11(13):2698-713. PubMed ID: 20648515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte.
    Ruan C; Paulose M; Varghese OK; Mor GK; Grimes CA
    J Phys Chem B; 2005 Aug; 109(33):15754-9. PubMed ID: 16852999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of ultrahigh crystalline TiO2 nanotubes.
    Khan MA; Jung HT; Yang OB
    J Phys Chem B; 2006 Apr; 110(13):6626-30. PubMed ID: 16570964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of highly ordered TiO2 nanorod/nanotube adjacent arrays for photoelectrochemical applications.
    Zhang H; Liu P; Liu X; Zhang S; Yao X; An T; Amal R; Zhao H
    Langmuir; 2010 Jul; 26(13):11226-32. PubMed ID: 20384304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural transformation, photocatalytic, and field-emission properties of ridged TiO2 nanotubes.
    Xu X; Tang C; Zeng H; Zhai T; Zhang S; Zhao H; Bando Y; Golberg D
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):1352-8. PubMed ID: 21443260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the synthesis and characterizations of TiO2 nanotubes.
    Dubey PK; Mishra PR; Sinha AS; Srivastava ON
    J Nanosci Nanotechnol; 2009 Sep; 9(9):5507-14. PubMed ID: 19928254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient inverted solar cells using TiO(2) nanotube arrays.
    Yu BY; Tsai A; Tsai SP; Wong KT; Yang Y; Chu CW; Shyue JJ
    Nanotechnology; 2008 Jun; 19(25):255202. PubMed ID: 21828647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxyapatite growth on anodic TiO2 nanotubes.
    Tsuchiya H; Macak JM; Müller L; Kunze J; Müller F; Greil P; Virtanen S; Schmuki P
    J Biomed Mater Res A; 2006 Jun; 77(3):534-41. PubMed ID: 16489589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical fabrication and properties of highly ordered Fe-doped TiO2 nanotubes.
    Kyeremateng NA; Hornebecq V; Martinez H; Knauth P; Djenizian T
    Chemphyschem; 2012 Nov; 13(16):3707-13. PubMed ID: 22930465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gas phase synthesis and field emission properties of 3D aligned double walled carbon nanotube/anatase hybrid architectures.
    Joshi RK; Engstler J; Navitski A; Sakharuk V; Müller G; Schneider JJ
    Nanoscale; 2011 Aug; 3(8):3258-64. PubMed ID: 21716996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TiO2-WO3 composite nanotubes by alloy anodization: growth and enhanced electrochromic properties.
    Nah YC; Ghicov A; Kim D; Berger S; Schmuki P
    J Am Chem Soc; 2008 Dec; 130(48):16154-5. PubMed ID: 18998674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled fabrication of porous double-walled TiO2 nanotubes via ultraviolet-assisted anodization.
    Ali G; Kim HJ; Kim JJ; Cho SO
    Nanoscale; 2014 Apr; 6(7):3632-7. PubMed ID: 24562049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Fabrication and photocatalytic activity of Pt-inserted titania nanotubes].
    Li HL; Luo WL; Tian WY; Chen T; Li C; Sun M; Zhu D; Liu RR; Zhao YL; Liu CL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jun; 29(6):1623-6. PubMed ID: 19810545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoelectrocatalytic properties of nitrogen doped TiO2/Ti photoelectrode prepared by plasma based ion implantation under visible light.
    Han L; Xin Y; Liu H; Ma X; Tang G
    J Hazard Mater; 2010 Mar; 175(1-3):524-31. PubMed ID: 19910111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Pt/TiO2 characteristics on temporal behavior of o-cresol decomposition by visible light-induced photocatalysis.
    Chen HW; Ku Y; Kuo YL
    Water Res; 2007 May; 41(10):2069-78. PubMed ID: 17418366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.