BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 21146495)

  • 1. High water solubility and fold in amphipols of proteins with large hydrophobic regions: oleosins and caleosin from seed lipid bodies.
    Gohon Y; Vindigni JD; Pallier A; Wien F; Celia H; Giuliani A; Tribet C; Chardot T; Briozzo P
    Biochim Biophys Acta; 2011 Mar; 1808(3):706-16. PubMed ID: 21146495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fold of an oleosin targeted to cellular oil bodies.
    Vindigni JD; Wien F; Giuliani A; Erpapazoglou Z; Tache R; Jagic F; Chardot T; Gohon Y; Froissard M
    Biochim Biophys Acta; 2013 Aug; 1828(8):1881-8. PubMed ID: 23603223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural properties of caleosin: a MS and CD study.
    Purkrtova Z; d'Andrea S; Jolivet P; Lipovova P; Kralova B; Kodicek M; Chardot T
    Arch Biochem Biophys; 2007 Aug; 464(2):335-43. PubMed ID: 17582382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability of artificial oil bodies constituted with recombinant caleosins.
    Liu TH; Chyan CL; Li FY; Tzen JT
    J Agric Food Chem; 2009 Mar; 57(6):2308-13. PubMed ID: 19216529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Caleosin of Arabidopsis thaliana : Effect of Calcium on Functional and Structural Properties.
    Purkrtova Z; Le Bon C; Kralova B; Ropers MH; Anton M; Chardot T
    J Agric Food Chem; 2008 Dec; 56(23):11217-24. PubMed ID: 19012406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning and secondary structure analysis of caleosin, a unique calcium-binding protein in oil bodies of plant seeds.
    Chen JC; Tsai CC; Tzen JT
    Plant Cell Physiol; 1999 Oct; 40(10):1079-86. PubMed ID: 10589521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. N-terminus of seed caleosins is essential for lipid droplet sorting but not for lipid accumulation.
    Purkrtová Z; Chardot T; Froissard M
    Arch Biochem Biophys; 2015 Aug; 579():47-54. PubMed ID: 26032334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single cell synchrotron FT-IR microspectroscopy reveals a link between neutral lipid and storage carbohydrate fluxes in S. cerevisiae.
    Jamme F; Vindigni JD; Méchin V; Cherifi T; Chardot T; Froissard M
    PLoS One; 2013; 8(9):e74421. PubMed ID: 24040242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constitution of stable artificial oil bodies with triacylglycerol, phospholipid, and caleosin.
    Chen MC; Chyan CL; Lee TT; Huang SH; Tzen JT
    J Agric Food Chem; 2004 Jun; 52(12):3982-7. PubMed ID: 15186126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective one-step extraction of Arabidopsis thaliana seed oleosins using organic solvents.
    D'Andréa S; Jolivet P; Boulard C; Larré C; Froissard M; Chardot T
    J Agric Food Chem; 2007 Nov; 55(24):10008-15. PubMed ID: 17966978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of intact oleosin for stabilization and function of oleosomes.
    Maurer S; Waschatko G; Schach D; Zielbauer BI; Dahl J; Weidner T; Bonn M; Vilgis TA
    J Phys Chem B; 2013 Nov; 117(44):13872-83. PubMed ID: 24088014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties and exploitation of oleosins.
    Capuano F; Beaudoin F; Napier JA; Shewry PR
    Biotechnol Adv; 2007; 25(2):203-6. PubMed ID: 17196782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solution behavior and crystallization of cytochrome bc₁ in the presence of amphipols.
    Charvolin D; Picard M; Huang LS; Berry EA; Popot JL
    J Membr Biol; 2014 Oct; 247(9-10):981-96. PubMed ID: 24942818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination and analyses of the N-termini of oil-body proteins, steroleosin, caleosin and oleosin.
    Lin LJ; Liao PC; Yang HH; Tzen JT
    Plant Physiol Biochem; 2005 Aug; 43(8):770-6. PubMed ID: 16198588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amphipols for each season.
    Zoonens M; Popot JL
    J Membr Biol; 2014 Oct; 247(9-10):759-96. PubMed ID: 24969706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How amphipols embed membrane proteins: global solvent accessibility and interaction with a flexible protein terminus.
    Etzkorn M; Zoonens M; Catoire LJ; Popot JL; Hiller S
    J Membr Biol; 2014 Oct; 247(9-10):965-70. PubMed ID: 24668145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enthalpy of interaction and binding isotherms of non-ionic surfactants onto micellar amphiphilic polymers (amphipols).
    Diab C; Winnik FM; Tribet C
    Langmuir; 2007 Mar; 23(6):3025-35. PubMed ID: 17284056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An in vitro system to examine the effective phospholipids and structural domain for protein targeting to seed oil bodies.
    Chen JC; Tzen JT
    Plant Cell Physiol; 2001 Nov; 42(11):1245-52. PubMed ID: 11726710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amphipols, nanodiscs, and fluorinated surfactants: three nonconventional approaches to studying membrane proteins in aqueous solutions.
    Popot JL
    Annu Rev Biochem; 2010; 79():737-75. PubMed ID: 20307193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complexation of integral membrane proteins by phosphorylcholine-based amphipols.
    Diab C; Tribet C; Gohon Y; Popot JL; Winnik FM
    Biochim Biophys Acta; 2007 Nov; 1768(11):2737-47. PubMed ID: 17825785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.