These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 21146640)

  • 1. Synthesis, mechanical and biological characterization of ionic doped carbonated hydroxyapatite/β-tricalcium phosphate mixtures.
    Kannan S; Vieira SI; Olhero SM; Torres PM; Pina S; da Cruz e Silva OA; Ferreira JM
    Acta Biomater; 2011 Apr; 7(4):1835-43. PubMed ID: 21146640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase composition, mechanical performance and in vitro biocompatibility of hydraulic setting calcium magnesium phosphate cement.
    Klammert U; Reuther T; Blank M; Reske I; Barralet JE; Grover LM; Kübler AC; Gbureck U
    Acta Biomater; 2010 Apr; 6(4):1529-35. PubMed ID: 19837194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Mn-doping on the structure and biological properties of β-tricalcium phosphate.
    Torres PM; Vieira SI; Cerqueira AR; Pina S; da Cruz Silva OA; Abrantes JC; Ferreira JM
    J Inorg Biochem; 2014 Jul; 136():57-66. PubMed ID: 24747361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of osteoblast responses to hydroxyapatite and hydroxyapatite/soluble calcium phosphate composites.
    Ogata K; Imazato S; Ehara A; Ebisu S; Kinomoto Y; Nakano T; Umakoshi Y
    J Biomed Mater Res A; 2005 Feb; 72(2):127-35. PubMed ID: 15625683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sr-containing hydroxyapatite: morphologies of HA crystals and bioactivity on osteoblast cells.
    Aina V; Bergandi L; Lusvardi G; Malavasi G; Imrie FE; Gibson IR; Cerrato G; Ghigo D
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1132-42. PubMed ID: 23827552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exposed hydroxyapatite particles on the surface of photo-crosslinked nanocomposites for promoting MC3T3 cell proliferation and differentiation.
    Cai L; Guinn AS; Wang S
    Acta Biomater; 2011 May; 7(5):2185-99. PubMed ID: 21284960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteoblastic differentiation under controlled bioactive ion release by silica and titania doped sodium-free calcium phosphate-based glass.
    Shah Mohammadi M; Chicatun F; Stähli C; Muja N; Bureau MN; Nazhat SN
    Colloids Surf B Biointerfaces; 2014 Sep; 121():82-91. PubMed ID: 24945606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suitability evaluation of sol-gel derived Si-substituted hydroxyapatite for dental and maxillofacial applications through in vitro osteoblasts response.
    Balamurugan A; Rebelo AH; Lemos AF; Rocha JH; Ventura JM; Ferreira JM
    Dent Mater; 2008 Oct; 24(10):1374-80. PubMed ID: 18417203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanostructured calcium phosphates for biomedical applications: novel synthesis and characterization.
    Kumta PN; Sfeir C; Lee DH; Olton D; Choi D
    Acta Biomater; 2005 Jan; 1(1):65-83. PubMed ID: 16701781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro response of osteoblast-like and odontoblast-like cells to unsubstituted and substituted apatites.
    Inoue M; LeGeros RZ; Inoue M; Tsujigiwa H; Nagatsuka H; Yamamoto T; Nagai N
    J Biomed Mater Res A; 2004 Sep; 70(4):585-93. PubMed ID: 15307163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcite as a bone substitute. Comparison with hydroxyapatite and tricalcium phosphate with regard to the osteoblastic activity.
    Monchau F; Hivart P; Genestie B; Chai F; Descamps M; Hildebrand HF
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):490-8. PubMed ID: 25428100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compositionally graded hydroxyapatite/tricalcium phosphate coating on Ti by laser and induction plasma.
    Roy M; Balla VK; Bandyopadhyay A; Bose S
    Acta Biomater; 2011 Feb; 7(2):866-73. PubMed ID: 20854939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MC3T3-E1 proliferation and differentiation on biphasic mixtures of Mg substituted β-tricalcium phosphate and amorphous calcium phosphate.
    Singh SS; Roy A; Lee BE; Banerjee I; Kumta PN
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():589-98. PubMed ID: 25491868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of hydroxyapatite sol on cell proliferation and alkaline phosphatase activity of osteoblastic MC3T3-E1 cells.
    Iwakami T; Imai T
    Biomed Mater Eng; 2002; 12(3):249-57. PubMed ID: 12446940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytocompatibility of brushite and monetite cell culture scaffolds made by three-dimensional powder printing.
    Klammert U; Reuther T; Jahn C; Kraski B; Kübler AC; Gbureck U
    Acta Biomater; 2009 Feb; 5(2):727-34. PubMed ID: 18835228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbonated apatites obtained by the hydrolysis of monetite: influence of carbonate content on adhesion and proliferation of MC3T3-E1 osteoblastic cells.
    Pieters IY; Van den Vreken NM; Declercq HA; Cornelissen MJ; Verbeeck RM
    Acta Biomater; 2010 Apr; 6(4):1561-8. PubMed ID: 19903542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydroxapatite and tricalcium phosphate prepared by precipitation method.
    Cik Rohaida CH; Idris B; Mohd Reusmaazran Y; Rusnah M; Fadzley Izwan AM
    Med J Malaysia; 2004 May; 59 Suppl B():156-7. PubMed ID: 15468865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical and topographical influence of hydroxyapatite and beta-tricalcium phosphate surfaces on human osteoblastic cell behavior.
    dos Santos EA; Farina M; Soares GA; Anselme K
    J Biomed Mater Res A; 2009 May; 89(2):510-20. PubMed ID: 18435401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silicon-stabilized α-tricalcium phosphate and its use in a calcium phosphate cement: characterization and cell response.
    Mestres G; Le Van C; Ginebra MP
    Acta Biomater; 2012 Mar; 8(3):1169-79. PubMed ID: 22154863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parameters in three-dimensional osteospheroids of telomerized human mesenchymal (stromal) stem cells grown on osteoconductive scaffolds that predict in vivo bone-forming potential.
    Burns JS; Rasmussen PL; Larsen KH; Schrøder HD; Kassem M
    Tissue Eng Part A; 2010 Jul; 16(7):2331-42. PubMed ID: 20196644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.