BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 21146896)

  • 1. Understanding gene circuits at cell-fate branch points for rational cell reprogramming.
    Zhou JX; Huang S
    Trends Genet; 2011 Feb; 27(2):55-62. PubMed ID: 21146896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A deterministic map of Waddington's epigenetic landscape for cell fate specification.
    Bhattacharya S; Zhang Q; Andersen ME
    BMC Syst Biol; 2011 May; 5():85. PubMed ID: 21619617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reprogramming cell fate with artificial transcription factors.
    Heiderscheit EA; Eguchi A; Spurgat MC; Ansari AZ
    FEBS Lett; 2018 Mar; 592(6):888-900. PubMed ID: 29389011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic identification of cell-fate regulatory programs using a single-cell atlas of mouse development.
    Fei L; Chen H; Ma L; E W; Wang R; Fang X; Zhou Z; Sun H; Wang J; Jiang M; Wang X; Yu C; Mei Y; Jia D; Zhang T; Han X; Guo G
    Nat Genet; 2022 Jul; 54(7):1051-1061. PubMed ID: 35817981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A general model for binary cell fate decision gene circuits with degeneracy: indeterminacy and switch behavior in the absence of cooperativity.
    Andrecut M; Halley JD; Winkler DA; Huang S
    PLoS One; 2011; 6(5):e19358. PubMed ID: 21625586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. JMJD3 aids in reprogramming of bone marrow progenitor cells to hepatic phenotype through epigenetic activation of hepatic transcription factors.
    Kochat V; Equbal Z; Baligar P; Kumar V; Srivastava M; Mukhopadhyay A
    PLoS One; 2017; 12(3):e0173977. PubMed ID: 28328977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstructed cell fate-regulatory programs in stem cells reveal hierarchies and key factors of neurogenesis.
    Mendoza-Parra MA; Malysheva V; Mohamed Saleem MA; Lieb M; Godel A; Gronemeyer H
    Genome Res; 2016 Nov; 26(11):1505-1519. PubMed ID: 27650846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A control-theoretical approach to the identification of a commitment switch in B lymphopoiesis cell fate determination.
    Salerno L; Cosentino C; Morrone G; Bilotta M; Amato F
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5355-8. PubMed ID: 26737501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-step transcriptional priming that drives the commitment of multipotent progenitors toward B cells.
    Miyai T; Takano J; Endo TA; Kawakami E; Agata Y; Motomura Y; Kubo M; Kashima Y; Suzuki Y; Kawamoto H; Ikawa T
    Genes Dev; 2018 Jan; 32(2):112-126. PubMed ID: 29440259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting pancreas cell fate decisions and reprogramming with a hierarchical multi-attractor model.
    Zhou JX; Brusch L; Huang S
    PLoS One; 2011 Mar; 6(3):e14752. PubMed ID: 21423725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering cell identity: establishing new gene regulatory and chromatin landscapes.
    Guo C; Morris SA
    Curr Opin Genet Dev; 2017 Oct; 46():50-57. PubMed ID: 28667865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reprogramming, oscillations and transdifferentiation in epigenetic landscapes.
    Kaity B; Sarkar R; Chakrabarti B; Mitra MK
    Sci Rep; 2018 May; 8(1):7358. PubMed ID: 29743499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reprogramming cell fate with a genome-scale library of artificial transcription factors.
    Eguchi A; Wleklinski MJ; Spurgat MC; Heiderscheit EA; Kropornicka AS; Vu CK; Bhimsaria D; Swanson SA; Stewart R; Ramanathan P; Kamp TJ; Slukvin I; Thomson JA; Dutton JR; Ansari AZ
    Proc Natl Acad Sci U S A; 2016 Dec; 113(51):E8257-E8266. PubMed ID: 27930301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular reprogramming--lowering gravity on Waddington's epigenetic landscape.
    Takahashi K
    J Cell Sci; 2012 Jun; 125(Pt 11):2553-60. PubMed ID: 22736045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leveling Waddington: the emergence of direct programming and the loss of cell fate hierarchies.
    Ladewig J; Koch P; Brüstle O
    Nat Rev Mol Cell Biol; 2013 Apr; 14(4):225-36. PubMed ID: 23847783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epigenetic reprogramming in mammals.
    Morgan HD; Santos F; Green K; Dean W; Reik W
    Hum Mol Genet; 2005 Apr; 14 Spec No 1():R47-58. PubMed ID: 15809273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Collective Histone State Dynamics on Epigenetic Landscape and Kinetics of Cell Reprogramming.
    Ashwin SS; Sasai M
    Sci Rep; 2015 Nov; 5():16746. PubMed ID: 26581803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transition states and cell fate decisions in epigenetic landscapes.
    Moris N; Pina C; Arias AM
    Nat Rev Genet; 2016 Nov; 17(11):693-703. PubMed ID: 27616569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenetic predisposition to reprogramming fates in somatic cells.
    Pour M; Pilzer I; Rosner R; Smith ZD; Meissner A; Nachman I
    EMBO Rep; 2015 Mar; 16(3):370-8. PubMed ID: 25600117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling Cellular Differentiation and Reprogramming with Gene Regulatory Networks.
    Hartmann A; Ravichandran S; Del Sol A
    Methods Mol Biol; 2019; 1975():37-51. PubMed ID: 31062304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.