These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 21146983)

  • 21. Change in microbial communities in acetate- and glucose-fed microbial fuel cells in the presence of light.
    Xing D; Cheng S; Regan JM; Logan BE
    Biosens Bioelectron; 2009 Sep; 25(1):105-11. PubMed ID: 19574034
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Power overshoot in two-chambered microbial fuel cell (MFC).
    Nien PC; Lee CY; Ho KC; Adav SS; Liu L; Wang A; Ren N; Lee DJ
    Bioresour Technol; 2011 Apr; 102(7):4742-6. PubMed ID: 21295969
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Variations of electron flux and microbial community in air-cathode microbial fuel cells fed with different substrates.
    Yu J; Park Y; Cho H; Chun J; Seon J; Cho S; Lee T
    Water Sci Technol; 2012; 66(4):748-53. PubMed ID: 22766862
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microbial diversity and population dynamics of activated sludge microbial communities participating in electricity generation in microbial fuel cells.
    Ki D; Park J; Lee J; Yoo K
    Water Sci Technol; 2008; 58(11):2195-201. PubMed ID: 19092196
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration.
    Jadhav GS; Ghangrekar MM
    Bioresour Technol; 2009 Jan; 100(2):717-23. PubMed ID: 18768312
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Operational temperature regulates anodic biofilm growth and the development of electrogenic activity.
    Michie IS; Kim JR; Dinsdale RM; Guwy AJ; Premier GC
    Appl Microbiol Biotechnol; 2011 Oct; 92(2):419-30. PubMed ID: 21853240
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber.
    Patil SA; Surakasi VP; Koul S; Ijmulwar S; Vivek A; Shouche YS; Kapadnis BP
    Bioresour Technol; 2009 Nov; 100(21):5132-9. PubMed ID: 19539465
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electricity generation from polyalcohols in single-chamber microbial fuel cells.
    Catal T; Xu S; Li K; Bermek H; Liu H
    Biosens Bioelectron; 2008 Dec; 24(4):855-60. PubMed ID: 18760591
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Discovery of commonly existing anode biofilm microbes in two different wastewater treatment MFCs using FLX Titanium pyrosequencing.
    Lee TK; Van Doan T; Yoo K; Choi S; Kim C; Park J
    Appl Microbiol Biotechnol; 2010 Aug; 87(6):2335-43. PubMed ID: 20532761
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On the dynamic response of the anode in microbial fuel cells.
    Katuri KP; Scott K
    Enzyme Microb Technol; 2011 Apr; 48(4-5):351-8. PubMed ID: 22112949
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Factors affecting current production in microbial fuel cells using different industrial wastewaters.
    Velasquez-Orta SB; Head IM; Curtis TP; Scott K
    Bioresour Technol; 2011 Apr; 102(8):5105-12. PubMed ID: 21345669
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mathematical model for microbial fuel cells with anodic biofilms and anaerobic digestion.
    Picioreanu C; van Loosdrecht MC; Katuri KP; Scott K; Head IM
    Water Sci Technol; 2008; 57(7):965-71. PubMed ID: 18441420
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microbial fuel cells: the effects of configurations, electrolyte solutions, and electrode materials on power generation.
    Li F; Sharma Y; Lei Y; Li B; Zhou Q
    Appl Biochem Biotechnol; 2010 Jan; 160(1):168-81. PubMed ID: 19172235
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Performance of microbial fuel cell in response to change in sludge loading rate at different anodic feed pH.
    Behera M; Ghangrekar MM
    Bioresour Technol; 2009 Nov; 100(21):5114-21. PubMed ID: 19539466
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microbial community differences between propionate-fed microbial fuel cell systems under open and closed circuit conditions.
    de Cárcer DA; Ha PT; Jang JK; Chang IS
    Appl Microbiol Biotechnol; 2011 Feb; 89(3):605-12. PubMed ID: 20922377
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of biofilm formation on the performance of microbial fuel cell for the treatment of palm oil mill effluent.
    Baranitharan E; Khan MR; Prasad DM; Teo WF; Tan GY; Jose R
    Bioprocess Biosyst Eng; 2015 Jan; 38(1):15-24. PubMed ID: 24981021
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bacterial communities adapted to higher external resistance can reduce the onset potential of anode in microbial fuel cells.
    Suzuki K; Kato Y; Yui A; Yamamoto S; Ando S; Rubaba O; Tashiro Y; Futamata H
    J Biosci Bioeng; 2018 May; 125(5):565-571. PubMed ID: 29373307
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isolation of the exoelectrogenic denitrifying bacterium Comamonas denitrificans based on dilution to extinction.
    Xing D; Cheng S; Logan BE; Regan JM
    Appl Microbiol Biotechnol; 2010 Feb; 85(5):1575-87. PubMed ID: 19779712
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improved energy output levels from small-scale Microbial Fuel Cells.
    Ieropoulos I; Greenman J; Melhuish C
    Bioelectrochemistry; 2010 Apr; 78(1):44-50. PubMed ID: 19540172
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controlling the occurrence of power overshoot by adapting microbial fuel cells to high anode potentials.
    Zhu X; Tokash JC; Hong Y; Logan BE
    Bioelectrochemistry; 2013 Apr; 90():30-5. PubMed ID: 23178374
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.