BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 21146994)

  • 1. Synthesis of antiproliferative flavones from calycopterin, major flavonoid of Calycopteris floribunda Lamk.
    Lewin G; Shridhar NB; Aubert G; Thoret S; Dubois J; Cresteil T
    Bioorg Med Chem; 2011 Jan; 19(1):186-96. PubMed ID: 21146994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pachypodol, a flavonol from the leaves of Calycopteris floribunda, inhibits the growth of CaCo 2 colon cancer cell line in vitro.
    Ali HA; Chowdhury AK; Rahman AK; Borkowski T; Nahar L; Sarker SD
    Phytother Res; 2008 Dec; 22(12):1684-7. PubMed ID: 18570232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship Between the Structure of Methoxylated and Hydroxylated Flavones and Their Antiproliferative Activity in HL60 Cells.
    Kawaii S; Ishikawa Y; Yoshizawa Y
    Anticancer Res; 2018 Oct; 38(10):5679-5684. PubMed ID: 30275187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of Flavone Derivatives via
    Zhang N; Yang J; Li K; Luo J; Yang S; Song JR; Chen C; Pan WD
    Molecules; 2019 Jul; 24(15):. PubMed ID: 31357486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and antiproliferative in-vitro activity of natural flavans and related compounds.
    Zhang L; Zhang WG; Ma EL; Wu L; Bao K; Wang XL; Wang YL; Song HR
    Arch Pharm (Weinheim); 2007 Dec; 340(12):650-5. PubMed ID: 17994602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New synthetic flavone derivatives induce apoptosis of hepatocarcinoma cells.
    Liu H; Dong A; Gao C; Tan C; Xie Z; Zu X; Qu L; Jiang Y
    Bioorg Med Chem; 2010 Sep; 18(17):6322-8. PubMed ID: 20674374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antiproliferative activity of flavonoids: influence of the sequential methoxylation state of the flavonoid structure.
    Moghaddam G; Ebrahimi SA; Rahbar-Roshandel N; Foroumadi A
    Phytother Res; 2012 Jul; 26(7):1023-8. PubMed ID: 22184071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and biological evaluation of a series of tangeretin-derived chalcones.
    Quintin J; Desrivot J; Thoret S; Le Menez P; Cresteil T; Lewin G
    Bioorg Med Chem Lett; 2009 Jan; 19(1):167-9. PubMed ID: 19013795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Five biflavonoids from Calycopteris floribunda (Combretaceae).
    Mayer R
    Phytochemistry; 2004 Mar; 65(5):593-601. PubMed ID: 15003423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and biological evaluation of baicalein derivatives as potent antitumor agents.
    Luo R; Wang J; Zhao L; Lu N; You Q; Guo Q; Li Z
    Bioorg Med Chem Lett; 2014 Mar; 24(5):1334-8. PubMed ID: 24507925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of the skeleton on the cytotoxicity of flavonoids.
    Lewin G; Aubert G; Thoret S; Dubois J; Cresteil T
    Bioorg Med Chem; 2012 Feb; 20(3):1231-9. PubMed ID: 22257529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antiangiogenic activity of xanthomicrol and calycopterin, two polymethoxylated hydroxyflavones in both in vitro and ex vivo models.
    Abbaszadeh H; Ebrahimi SA; Akhavan MM
    Phytother Res; 2014 Nov; 28(11):1661-70. PubMed ID: 24895220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and antibacterial activity of substituted flavones, 4-thioflavones and 4-iminoflavones.
    Ullah Mughal E; Ayaz M; Hussain Z; Hasan A; Sadiq A; Riaz M; Malik A; Hussain S; Choudhary MI
    Bioorg Med Chem; 2006 Jul; 14(14):4704-11. PubMed ID: 16603364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First total synthesis of protoapigenone and its analogues as potent cytotoxic agents.
    Lin AS; Nakagawa-Goto K; Chang FR; Yu D; Morris-Natschke SL; Wu CC; Chen SL; Wu YC; Lee KH
    J Med Chem; 2007 Aug; 50(16):3921-7. PubMed ID: 17622129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct semi-synthesis of the anticancer lead-drug protoapigenone from apigenin, and synthesis of further new cytotoxic protoflavone derivatives.
    Hunyadi A; Chuang DW; Danko B; Chiang MY; Lee CL; Wang HC; Wu CC; Chang FR; Wu YC
    PLoS One; 2011; 6(8):e23922. PubMed ID: 21912610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Naphthoflavones as Antiproliferative Agents: Design, Synthesis and Biological Evaluation.
    Kumar D; Singh O; Nepali K; Bedi P; Qayum A; Singh S; Jain SK
    Anticancer Agents Med Chem; 2016; 16(7):881-90. PubMed ID: 26845133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, biological evaluation and molecular docking studies of flavone and isoflavone derivatives as a novel class of KSP (kinesin spindle protein) inhibitors.
    Dong JJ; Li QS; Liu ZP; Wang SF; Zhao MY; Yang YH; Wang XM; Zhu HL
    Eur J Med Chem; 2013; 70():427-33. PubMed ID: 24184776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and antimalarial evaluation of a series of piperazinyl flavones.
    Auffret G; Labaied M; Frappier F; Rasoanaivo P; Grellier P; Lewin G
    Bioorg Med Chem Lett; 2007 Feb; 17(4):959-63. PubMed ID: 17166718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antitumor agents 260. New desmosdumotin B analogues with improved in vitro anticancer activity.
    Nakagawa-Goto K; Bastow KF; Chen TH; Morris-Natschke SL; Lee KH
    J Med Chem; 2008 Jun; 51(11):3297-303. PubMed ID: 18473435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and biological evaluation of quinoline analogues of flavones as potential anticancer agents and tubulin polymerization inhibitors.
    Shobeiri N; Rashedi M; Mosaffa F; Zarghi A; Ghandadi M; Ghasemi A; Ghodsi R
    Eur J Med Chem; 2016 May; 114():14-23. PubMed ID: 26974371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.