These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 21147045)

  • 1. Molecular development of the extrinsic sensory innervation of the gastrointestinal tract.
    Ratcliffe EM
    Auton Neurosci; 2011 Apr; 161(1-2):1-5. PubMed ID: 21147045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of the vagal innervation of the gut: steering the wandering nerve.
    Ratcliffe EM; Farrar NR; Fox EA
    Neurogastroenterol Motil; 2011 Oct; 23(10):898-911. PubMed ID: 21851506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enteric neurons synthesize netrins and are essential for the development of the vagal sensory innervation of the fetal gut.
    Ratcliffe EM; Fan L; Mohammed TJ; Anderson M; Chalazonitis A; Gershon MD
    Dev Neurobiol; 2011 May; 71(5):362-73. PubMed ID: 21485011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Netrin/DCC-mediated attraction of vagal sensory axons to the fetal mouse gut.
    Ratcliffe EM; Setru SU; Chen JJ; Li ZS; D'Autréaux F; Gershon MD
    J Comp Neurol; 2006 Oct; 498(5):567-80. PubMed ID: 16917820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of the intrinsic and extrinsic innervation of the gut.
    Uesaka T; Young HM; Pachnis V; Enomoto H
    Dev Biol; 2016 Sep; 417(2):158-67. PubMed ID: 27112528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping of Extrinsic Innervation of the Gastrointestinal Tract in the Mouse Embryo.
    Niu X; Liu L; Wang T; Chuan X; Yu Q; Du M; Gu Y; Wang L
    J Neurosci; 2020 Aug; 40(35):6691-6708. PubMed ID: 32690615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasticity of vagal afferent signaling in the gut.
    Grabauskas G; Owyang C
    Medicina (Kaunas); 2017; 53(2):73-84. PubMed ID: 28454890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laminin terminates the Netrin/DCC mediated attraction of vagal sensory axons.
    Ratcliffe EM; D'Autréaux F; Gershon MD
    Dev Neurobiol; 2008 Jun; 68(7):960-71. PubMed ID: 18418846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slit/Robo-mediated chemorepulsion of vagal sensory axons in the fetal gut.
    Goldberg D; Borojevic R; Anderson M; Chen JJ; Gershon MD; Ratcliffe EM
    Dev Dyn; 2013 Jan; 242(1):9-15. PubMed ID: 23161783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The nature of catecholamine-containing neurons in the enteric nervous system in relationship with organogenesis, normal human anatomy and neurodegeneration.
    Natale G; Ryskalin L; Busceti CL; Biagioni F; Fornai F
    Arch Ital Biol; 2017 Sep; 155(3):118-130. PubMed ID: 29220864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vanilloid receptor (VR1) expression in vagal afferent neurons innervating the gastrointestinal tract.
    Patterson LM; Zheng H; Ward SM; Berthoud HR
    Cell Tissue Res; 2003 Mar; 311(3):277-87. PubMed ID: 12658436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A genetic approach for investigating vagal sensory roles in regulation of gastrointestinal function and food intake.
    Fox EA
    Auton Neurosci; 2006 Jun; 126-127():9-29. PubMed ID: 16677865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age-related changes in vagal afferents innervating the gastrointestinal tract.
    Phillips RJ; Walter GC; Powley TL
    Auton Neurosci; 2010 Feb; 153(1-2):90-8. PubMed ID: 19665435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensory nerve endings arising from single spinal afferent neurons that innervate both circular muscle and myenteric ganglia in mouse colon: colon-brain axis.
    Spencer NJ; Kyloh MA; Travis L; Dodds KN
    Cell Tissue Res; 2020 Jul; 381(1):25-34. PubMed ID: 32215722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Afferents of cranial sensory ganglia pathfind to their target independent of the site of entry into the hindbrain.
    Tashiro Y; Endo T; Shirasaki R; Miyahara M; Heizmann CW; Murakami F
    J Comp Neurol; 2000 Feb; 417(4):491-500. PubMed ID: 10701868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vagal afferent innervation of the proximal gastrointestinal tract mucosa: chemoreceptor and mechanoreceptor architecture.
    Powley TL; Spaulding RA; Haglof SA
    J Comp Neurol; 2011 Mar; 519(4):644-60. PubMed ID: 21246548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous labeling of vagal innervation of the gut and afferent projections from the visceral forebrain with dil injected into the dorsal vagal complex in the rat.
    Berthoud HR; Jedrzejewska A; Powley TL
    J Comp Neurol; 1990 Nov; 301(1):65-79. PubMed ID: 1706359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vagal afferent neurons projecting to the stomach and small intestine exhibit multiple N-methyl-D-aspartate receptor subunit phenotypes.
    Czaja K; Ritter RC; Burns GA
    Brain Res; 2006 Nov; 1119(1):86-93. PubMed ID: 16989781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CXCR4 and CXCL12 signaling regulates the development of extrinsic innervation to the colorectum.
    Halasy V; Szőcs E; Soós Á; Kovács T; Pecsenye-Fejszák N; Hotta R; Goldstein AM; Nagy N
    Development; 2023 Apr; 150(8):. PubMed ID: 37039233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain-derived neurotrophic factor immunoreactive vagal sensory neurons innervating the gastrointestinal tract of the rat.
    Hayakawa T; Kuwahara-Otani S; Maeda S; Tanaka K; Seki M
    J Chem Neuroanat; 2014 Nov; 61-62():83-7. PubMed ID: 25128629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.