BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 21147065)

  • 1. The carboxy-terminal region of SMAP2 directs subcellular localization as well as Arf protein specificity.
    Sakakura I; Tanabe K; Nouki N; Suzuki M; Satake M; Watanabe T
    Biochem Biophys Res Commun; 2011 Jan; 404(2):661-6. PubMed ID: 21147065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Arf GTPase-activating protein SMAP1 promotes transferrin receptor endocytosis and interacts with SMAP2.
    Kobayashi N; Kon S; Henmi Y; Funaki T; Satake M; Tanabe K
    Biochem Biophys Res Commun; 2014 Oct; 453(3):473-9. PubMed ID: 25281535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An ADP-ribosylation factor GTPase-activating protein Git2-short/KIAA0148 is involved in subcellular localization of paxillin and actin cytoskeletal organization.
    Mazaki Y; Hashimoto S; Okawa K; Tsubouchi A; Nakamura K; Yagi R; Yano H; Kondo A; Iwamatsu A; Mizoguchi A; Sabe H
    Mol Biol Cell; 2001 Mar; 12(3):645-62. PubMed ID: 11251077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localization of SMAP2 to the TGN and its function in the regulation of TGN protein transport.
    Funaki T; Kon S; Ronn RE; Henmi Y; Kobayashi Y; Watanabe T; Nakayama K; Tanabe K; Satake M
    Cell Struct Funct; 2011; 36(1):83-95. PubMed ID: 21368446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SMAP2, a novel ARF GTPase-activating protein, interacts with clathrin and clathrin assembly protein and functions on the AP-1-positive early endosome/trans-Golgi network.
    Natsume W; Tanabe K; Kon S; Yoshida N; Watanabe T; Torii T; Satake M
    Mol Biol Cell; 2006 Jun; 17(6):2592-603. PubMed ID: 16571680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A SMAP gene family encoding ARF GTPase-activating proteins and its implication in membrane trafficking.
    Tanabe K; Kon S; Ichijo N; Funaki T; Natsume W; Watanabe T; Satake M
    Methods Enzymol; 2008; 438():155-70. PubMed ID: 18413247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ArfGAP1 function in COPI mediated membrane traffic: currently debated models and comparison to other coat-binding ArfGAPs.
    Shiba Y; Randazzo PA
    Histol Histopathol; 2012 Sep; 27(9):1143-53. PubMed ID: 22806901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assays and properties of the ArfGAPs, AMAP1 and AMAP2, in Arf6 function.
    Hashimoto S; Hashimoto A; Yamada A; Onodera Y; Sabe H
    Methods Enzymol; 2005; 404():216-31. PubMed ID: 16413272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport of the cholera toxin B-subunit from recycling endosomes to the Golgi requires clathrin and AP-1.
    Matsudaira T; Niki T; Taguchi T; Arai H
    J Cell Sci; 2015 Aug; 128(16):3131-42. PubMed ID: 26136365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mice doubly-deficient in the Arf GAPs SMAP1 and SMAP2 exhibit embryonic lethality.
    Sumiyoshi M; Masuda N; Tanuma N; Ogoh H; Imai E; Otsuka M; Hayakawa N; Ohno K; Matsui Y; Hara K; Gotoh R; Suzuki M; Rai S; Tanaka H; Matsumura I; Shima H; Watanabe T
    FEBS Lett; 2015 Sep; 589(19 Pt B):2754-62. PubMed ID: 26296315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activity of specific lipid-regulated ADP ribosylation factor-GTPase-activating proteins is required for Sec14p-dependent Golgi secretory function in yeast.
    Yanagisawa LL; Marchena J; Xie Z; Li X; Poon PP; Singer RA; Johnston GC; Randazzo PA; Bankaitis VA
    Mol Biol Cell; 2002 Jul; 13(7):2193-206. PubMed ID: 12134061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active Arf6 recruits ARNO/cytohesin GEFs to the PM by binding their PH domains.
    Cohen LA; Honda A; Varnai P; Brown FD; Balla T; Donaldson JG
    Mol Biol Cell; 2007 Jun; 18(6):2244-53. PubMed ID: 17409355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Promiscuous and specific phospholipid binding by domains in ZAC, a membrane-associated Arabidopsis protein with an ARF GAP zinc finger and a C2 domain.
    Jensen RB; Lykke-Andersen K; Frandsen GI; Nielsen HB; Haseloff J; Jespersen HM; Mundy J; Skriver K
    Plant Mol Biol; 2000 Dec; 44(6):799-814. PubMed ID: 11202441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput fluorescence polarization assay for the enzymatic activity of GTPase-activating protein of ADP-ribosylation factor (ARFGAP).
    Sun W; Vanhooke JL; Sondek J; Zhang Q
    J Biomol Screen; 2011 Aug; 16(7):717-23. PubMed ID: 21593484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the subcellular distribution of avian p95-APP2, an ARF-GAP orthologous to mammalian paxillin kinase linker.
    Paris S; Za L; Sporchia B; de Curtis I
    Int J Biochem Cell Biol; 2002 Jul; 34(7):826-37. PubMed ID: 11950598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ARF-GAP-mediated interaction between the ER-Golgi v-SNAREs and the COPI coat.
    Rein U; Andag U; Duden R; Schmitt HD; Spang A
    J Cell Biol; 2002 Apr; 157(3):395-404. PubMed ID: 11970962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arf GTPase-Activating proteins ADAP1 and ARAP1 regulate incorporation of CD63 in multivesicular bodies.
    Suzuki K; Okawa Y; Akter S; Ito H; Shiba Y
    Biol Open; 2024 May; 13(5):. PubMed ID: 38682696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Casein kinase I regulates membrane binding by ARF GAP1.
    Yu S; Roth MG
    Mol Biol Cell; 2002 Aug; 13(8):2559-70. PubMed ID: 12181329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel GTPase-activating protein for ARF6 directly interacts with clathrin and regulates clathrin-dependent endocytosis.
    Tanabe K; Torii T; Natsume W; Braesch-Andersen S; Watanabe T; Satake M
    Mol Biol Cell; 2005 Apr; 16(4):1617-28. PubMed ID: 15659652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ADP-ribosylation factor domain protein 1 (ARD1), a multifunctional protein with ubiquitin E3 ligase, GAP, and ARF domains.
    Vichi A; Moss J; Vaughan M
    Methods Enzymol; 2005; 404():195-206. PubMed ID: 16413270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.