BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 21147085)

  • 1. Interaction of Sox1, Sox2, Sox3 and Oct4 during primary neurogenesis.
    Archer TC; Jin J; Casey ES
    Dev Biol; 2011 Feb; 350(2):429-40. PubMed ID: 21147085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Xenopus Sox3 activates sox2 and geminin and indirectly represses Xvent2 expression to induce neural progenitor formation at the expense of non-neural ectodermal derivatives.
    Rogers CD; Harafuji N; Archer T; Cunningham DD; Casey ES
    Mech Dev; 2009; 126(1-2):42-55. PubMed ID: 18992330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of Sox1 during Xenopus early embryogenesis.
    Nitta KR; Takahashi S; Haramoto Y; Fukuda M; Onuma Y; Asashima M
    Biochem Biophys Res Commun; 2006 Dec; 351(1):287-93. PubMed ID: 17056008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regeneration of Xenopus laevis spinal cord requires Sox2/3 expressing cells.
    Muñoz R; Edwards-Faret G; Moreno M; Zuñiga N; Cline H; Larraín J
    Dev Biol; 2015 Dec; 408(2):229-43. PubMed ID: 25797152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A directional Wnt/beta-catenin-Sox2-proneural pathway regulates the transition from proliferation to differentiation in the Xenopus retina.
    Agathocleous M; Iordanova I; Willardsen MI; Xue XY; Vetter ML; Harris WA; Moore KB
    Development; 2009 Oct; 136(19):3289-99. PubMed ID: 19736324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sox3 expression is maintained by FGF signaling and restricted to the neural plate by Vent proteins in the Xenopus embryo.
    Rogers CD; Archer TC; Cunningham DD; Grammer TC; Casey EM
    Dev Biol; 2008 Jan; 313(1):307-19. PubMed ID: 18031719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SOX2 functions to maintain neural progenitor identity.
    Graham V; Khudyakov J; Ellis P; Pevny L
    Neuron; 2003 Aug; 39(5):749-65. PubMed ID: 12948443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epigenetic regulation of human SOX3 gene expression during early phases of neural differentiation of NT2/D1 cells.
    Topalovic V; Krstic A; Schwirtlich M; Dolfini D; Mantovani R; Stevanovic M; Mojsin M
    PLoS One; 2017; 12(9):e0184099. PubMed ID: 28886103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sox1 maintains the undifferentiated state of cortical neural progenitor cells via the suppression of Prox1-mediated cell cycle exit and neurogenesis.
    Elkouris M; Balaskas N; Poulou M; Politis PK; Panayiotou E; Malas S; Thomaidou D; Remboutsika E
    Stem Cells; 2011 Jan; 29(1):89-98. PubMed ID: 21280160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dbx1 is a direct target of SOX3 in the spinal cord.
    Rogers N; McAninch D; Thomas P
    PLoS One; 2014; 9(4):e95356. PubMed ID: 24751947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative genomics on SOX2 orthologs.
    Katoh Y; Katoh M
    Oncol Rep; 2005 Sep; 14(3):797-800. PubMed ID: 16077994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. sox2 and sox3 Play unique roles in development of hair cells and neurons in the zebrafish inner ear.
    Gou Y; Vemaraju S; Sweet EM; Kwon HJ; Riley BB
    Dev Biol; 2018 Mar; 435(1):73-83. PubMed ID: 29355523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sox3 expression identifies neural progenitors in persistent neonatal and adult mouse forebrain germinative zones.
    Wang TW; Stromberg GP; Whitney JT; Brower NW; Klymkowsky MW; Parent JM
    J Comp Neurol; 2006 Jul; 497(1):88-100. PubMed ID: 16680766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of highly conserved putative developmental enhancers bound by SOX3 in neural progenitors using ChIP-Seq.
    McAninch D; Thomas P
    PLoS One; 2014; 9(11):e113361. PubMed ID: 25409526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stem cell factor Sox2 and its close relative Sox3 have differentiation functions in oligodendrocytes.
    Hoffmann SA; Hos D; Küspert M; Lang RA; Lovell-Badge R; Wegner M; Reiprich S
    Development; 2014 Jan; 141(1):39-50. PubMed ID: 24257626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Requirement of Sox2-mediated signaling for differentiation of early Xenopus neuroectoderm.
    Kishi M; Mizuseki K; Sasai N; Yamazaki H; Shiota K; Nakanishi S; Sasai Y
    Development; 2000 Feb; 127(4):791-800. PubMed ID: 10648237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Craniofacial Development Is Fine-Tuned by Sox2.
    Mandalos NP; Dimou A; Gavala MA; Lambraki E; Remboutsika E
    Genes (Basel); 2023 Jan; 14(2):. PubMed ID: 36833308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The RNA-binding protein XSeb4R regulates maternal Sox3 at the posttranscriptional level during maternal-zygotic transition in Xenopus.
    Bentaya S; Ghogomu SM; Vanhomwegen J; Van Campenhout C; Thelie A; Dhainaut M; Bellefroid EJ; Souopgui J
    Dev Biol; 2012 Mar; 363(2):362-72. PubMed ID: 22261149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sox1 acts through multiple independent pathways to promote neurogenesis.
    Kan L; Israsena N; Zhang Z; Hu M; Zhao LR; Jalali A; Sahni V; Kessler JA
    Dev Biol; 2004 May; 269(2):580-94. PubMed ID: 15110721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct SoxB1 networks are required for naïve and primed pluripotency.
    Corsinotti A; Wong FC; Tatar T; Szczerbinska I; Halbritter F; Colby D; Gogolok S; Pantier R; Liggat K; Mirfazeli ES; Hall-Ponsele E; Mullin NP; Wilson V; Chambers I
    Elife; 2017 Dec; 6():. PubMed ID: 29256862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.