These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 21147179)

  • 1. Corticospinal tract fibers cross the ephrin-B3-negative part of the midline of the spinal cord after brain injury.
    Omoto S; Ueno M; Mochio S; Yamashita T
    Neurosci Res; 2011 Mar; 69(3):187-95. PubMed ID: 21147179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ephrin-B3 is the midline barrier that prevents corticospinal tract axons from recrossing, allowing for unilateral motor control.
    Kullander K; Croll SD; Zimmer M; Pan L; McClain J; Hughes V; Zabski S; DeChiara TM; Klein R; Yancopoulos GD; Gale NW
    Genes Dev; 2001 Apr; 15(7):877-88. PubMed ID: 11297511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Forward signaling mediated by ephrin-B3 prevents contralateral corticospinal axons from recrossing the spinal cord midline.
    Yokoyama N; Romero MI; Cowan CA; Galvan P; Helmbacher F; Charnay P; Parada LF; Henkemeyer M
    Neuron; 2001 Jan; 29(1):85-97. PubMed ID: 11182083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EphA4-dependent axon retraction and midline localization of Ephrin-B3 are disrupted in the spinal cord of mice lacking mDia1 and mDia3 in combination.
    Toyoda Y; Shinohara R; Thumkeo D; Kamijo H; Nishimaru H; Hioki H; Kaneko T; Ishizaki T; Furuyashiki T; Narumiya S
    Genes Cells; 2013 Oct; 18(10):873-85. PubMed ID: 23890216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of treating traumatic brain injury with collagen scaffolds and human bone marrow stromal cells on sprouting of corticospinal tract axons into the denervated side of the spinal cord.
    Mahmood A; Wu H; Qu C; Xiong Y; Chopp M
    J Neurosurg; 2013 Feb; 118(2):381-9. PubMed ID: 23198801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and reorganization of corticospinal projections in EphA4 deficient mice.
    Coonan JR; Greferath U; Messenger J; Hartley L; Murphy M; Boyd AW; Dottori M; Galea MP; Bartlett PF
    J Comp Neurol; 2001 Jul; 436(2):248-62. PubMed ID: 11438928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sprouting of corticospinal tract axons from the contralateral hemisphere into the denervated side of the spinal cord is associated with functional recovery in adult rat after traumatic brain injury and erythropoietin treatment.
    Zhang Y; Xiong Y; Mahmood A; Meng Y; Liu Z; Qu C; Chopp M
    Brain Res; 2010 Sep; 1353():249-57. PubMed ID: 20654589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eph tyrosine kinase receptor EphA4 is required for the topographic mapping of the corticospinal tract.
    Canty AJ; Greferath U; Turnley AM; Murphy M
    Proc Natl Acad Sci U S A; 2006 Oct; 103(42):15629-34. PubMed ID: 17030822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive Corticospinal Labeling with mu-crystallin Transgene Reveals Axon Regeneration after Spinal Cord Trauma in ngr1-/- Mice.
    Fink KL; Strittmatter SM; Cafferty WB
    J Neurosci; 2015 Nov; 35(46):15403-18. PubMed ID: 26586827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spinal RacGAP α-Chimaerin Is Required to Establish the Midline Barrier for Proper Corticospinal Axon Guidance.
    Katori S; Noguchi-Katori Y; Itohara S; Iwasato T
    J Neurosci; 2017 Aug; 37(32):7682-7699. PubMed ID: 28747385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extensive spinal decussation and bilateral termination of cervical corticospinal projections in rhesus monkeys.
    Rosenzweig ES; Brock JH; Culbertson MD; Lu P; Moseanko R; Edgerton VR; Havton LA; Tuszynski MH
    J Comp Neurol; 2009 Mar; 513(2):151-63. PubMed ID: 19125408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuronal activity and microglial activation support corticospinal tract and proprioceptive afferent sprouting in spinal circuits after a corticospinal system lesion.
    Jiang YQ; Armada K; Martin JH
    Exp Neurol; 2019 Nov; 321():113015. PubMed ID: 31326353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reticulospinal plasticity after cervical spinal cord injury in the rat involves withdrawal of projections below the injury.
    Weishaupt N; Hurd C; Wei DZ; Fouad K
    Exp Neurol; 2013 Sep; 247():241-9. PubMed ID: 23684634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spinal cord maturation and locomotion in mice with an isolated cortex.
    Han Q; Feng J; Qu Y; Ding Y; Wang M; So KF; Wu W; Zhou L
    Neuroscience; 2013 Dec; 253():235-44. PubMed ID: 24012835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined motor cortex and spinal cord neuromodulation promotes corticospinal system functional and structural plasticity and motor function after injury.
    Song W; Amer A; Ryan D; Martin JH
    Exp Neurol; 2016 Mar; 277():46-57. PubMed ID: 26708732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of the corticospinal tract in the mouse spinal cord: a quantitative ultrastructural analysis.
    Hsu JY; Stein SA; Xu XM
    Brain Res; 2006 Apr; 1084(1):16-27. PubMed ID: 16616050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ephrin-B3 decreases the survival of adult rat spinal cord-derived neural stem/progenitor cells in vitro and after transplantation into the injured rat spinal cord.
    Fan XY; Mothe AJ; Tator CH
    Stem Cells Dev; 2013 Feb; 22(3):359-73. PubMed ID: 22900481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regenerative growth of corticospinal tract axons via the ventral column after spinal cord injury in mice.
    Steward O; Zheng B; Tessier-Lavigne M; Hofstadter M; Sharp K; Yee KM
    J Neurosci; 2008 Jul; 28(27):6836-47. PubMed ID: 18596159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specificity of corticospinal axon arbors sprouting into denervated contralateral spinal cord.
    Kuang RZ; Kalil K
    J Comp Neurol; 1990 Dec; 302(3):461-72. PubMed ID: 1702111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intraspinal rewiring of the corticospinal tract requires target-derived brain-derived neurotrophic factor and compensates lost function after brain injury.
    Ueno M; Hayano Y; Nakagawa H; Yamashita T
    Brain; 2012 Apr; 135(Pt 4):1253-67. PubMed ID: 22436236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.