These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
289 related articles for article (PubMed ID: 21147252)
1. Bone marrow stromal cells (bone marrow-derived multipotent mesenchymal stromal cells) for bone tissue engineering: basic science to clinical translation. Kagami H; Agata H; Tojo A Int J Biochem Cell Biol; 2011 Mar; 43(3):286-9. PubMed ID: 21147252 [TBL] [Abstract][Full Text] [Related]
2. Ovine bone- and marrow-derived progenitor cells and their potential for scaffold-based bone tissue engineering applications in vitro and in vivo. Reichert JC; Woodruff MA; Friis T; Quent VM; Gronthos S; Duda GN; Schütz MA; Hutmacher DW J Tissue Eng Regen Med; 2010 Oct; 4(7):565-76. PubMed ID: 20568083 [TBL] [Abstract][Full Text] [Related]
3. The cultivation of human multipotent mesenchymal stromal cells in clinical grade medium for bone tissue engineering. Pytlík R; Stehlík D; Soukup T; Kalbácová M; Rypácek F; Trc T; Mulinková K; Michnová P; Kideryová L; Zivný J; Klener P; Veselá R; Trnený M; Klener P Biomaterials; 2009 Jul; 30(20):3415-27. PubMed ID: 19362364 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of partially demineralized osteoporotic cancellous bone matrix combined with human bone marrow stromal cells for tissue engineering: an in vitro and in vivo study. Liu G; Sun J; Li Y; Zhou H; Cui L; Liu W; Cao Y Calcif Tissue Int; 2008 Sep; 83(3):176-85. PubMed ID: 18704250 [TBL] [Abstract][Full Text] [Related]
5. The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair. Arthur A; Zannettino A; Gronthos S J Cell Physiol; 2009 Feb; 218(2):237-45. PubMed ID: 18792913 [TBL] [Abstract][Full Text] [Related]
6. Multilineage potential of bone-marrow-derived mesenchymal stem cell cell sheets: implications for tissue engineering. See EY; Toh SL; Goh JC Tissue Eng Part A; 2010 Apr; 16(4):1421-31. PubMed ID: 19951089 [TBL] [Abstract][Full Text] [Related]
7. [Marrow stromal cells and repair of bone defect]. Peng S; Fang H; Luo Y Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Mar; 19(3):245-8. PubMed ID: 15828486 [TBL] [Abstract][Full Text] [Related]
8. The use of bone marrow stromal cells (bone marrow-derived multipotent mesenchymal stromal cells) for alveolar bone tissue engineering: basic science to clinical translation. Kagami H; Agata H; Inoue M; Asahina I; Tojo A; Yamashita N; Imai K Tissue Eng Part B Rev; 2014 Jun; 20(3):229-32. PubMed ID: 24494719 [TBL] [Abstract][Full Text] [Related]
9. Engineered extracellular matrices modulate the expression profile and feeder properties of bone marrow-derived human multipotent mesenchymal stromal cells. Seib FP; Müller K; Franke M; Grimmer M; Bornhäuser M; Werner C Tissue Eng Part A; 2009 Oct; 15(10):3161-71. PubMed ID: 19358630 [TBL] [Abstract][Full Text] [Related]
10. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410 [TBL] [Abstract][Full Text] [Related]
11. In vitro and in vivo evaluation of differentially demineralized cancellous bone scaffolds combined with human bone marrow stromal cells for tissue engineering. Mauney JR; Jaquiéry C; Volloch V; Heberer M; Martin I; Kaplan DL Biomaterials; 2005 Jun; 26(16):3173-85. PubMed ID: 15603812 [TBL] [Abstract][Full Text] [Related]
12. Luciferase labeling for multipotent stromal cell tracking in spinal fusion versus ectopic bone tissue engineering in mice and rats. Geuze RE; Prins HJ; Öner FC; van der Helm YJ; Schuijff LS; Martens AC; Kruyt MC; Alblas J; Dhert WJ Tissue Eng Part A; 2010 Nov; 16(11):3343-51. PubMed ID: 20575656 [TBL] [Abstract][Full Text] [Related]
13. Collection and culture of alveolar bone marrow multipotent mesenchymal stromal cells from older individuals. Han J; Okada H; Takai H; Nakayama Y; Maeda T; Ogata Y J Cell Biochem; 2009 Aug; 107(6):1198-204. PubMed ID: 19507174 [TBL] [Abstract][Full Text] [Related]
14. Comparison of multipotent differentiation potentials of murine primary bone marrow stromal cells and mesenchymal stem cell line C3H10T1/2. Zhao L; Li G; Chan KM; Wang Y; Tang PF Calcif Tissue Int; 2009 Jan; 84(1):56-64. PubMed ID: 19052794 [TBL] [Abstract][Full Text] [Related]
15. Clinical-scale expansion of a mixed population of bone-marrow-derived stem and progenitor cells for potential use in bone-tissue regeneration. Dennis JE; Esterly K; Awadallah A; Parrish CR; Poynter GM; Goltry KL Stem Cells; 2007 Oct; 25(10):2575-82. PubMed ID: 17585167 [TBL] [Abstract][Full Text] [Related]
16. [Differentiation potential of stem cells from bone marrow]. Kronenwett R; Haas R Med Klin (Munich); 2006 Mar; 101 Suppl 1():182-5. PubMed ID: 16802550 [TBL] [Abstract][Full Text] [Related]
17. Hard tissue formation in a porous HA/TCP ceramic scaffold loaded with stromal cells derived from dental pulp and bone marrow. Zhang W; Walboomers XF; van Osch GJ; van den Dolder J; Jansen JA Tissue Eng Part A; 2008 Feb; 14(2):285-94. PubMed ID: 18333781 [TBL] [Abstract][Full Text] [Related]
18. Bone reconstruction with bone marrow stromal cells. Liu W; Cui L; Cao Y Methods Enzymol; 2006; 420():362-80. PubMed ID: 17161706 [TBL] [Abstract][Full Text] [Related]
19. In vivo bone formation by human marrow stromal cells in biodegradable scaffolds that release dexamethasone and ascorbate-2-phosphate. Kim H; Suh H; Jo SA; Kim HW; Lee JM; Kim EH; Reinwald Y; Park SH; Min BH; Jo I Biochem Biophys Res Commun; 2005 Jul; 332(4):1053-60. PubMed ID: 15922303 [TBL] [Abstract][Full Text] [Related]
20. Isolation and culture of bone marrow-derived human multipotent stromal cells (hMSCs). Wolfe M; Pochampally R; Swaney W; Reger RL Methods Mol Biol; 2008; 449():3-25. PubMed ID: 18370080 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]