BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 21147880)

  • 41. The four genomes of the alga Pyrenomonas salina (Cryptophyta).
    Maier UG
    Biosystems; 1992; 28(1-3):69-73. PubMed ID: 1292668
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cryptomonad algae are evolutionary chimaeras of two phylogenetically distinct unicellular eukaryotes.
    Douglas SE; Murphy CA; Spencer DF; Gray MW
    Nature; 1991 Mar; 350(6314):148-51. PubMed ID: 2005963
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Good things in small packages: the tiny genomes of chlorarachniophyte endosymbionts.
    Gilson PR; McFadden GI
    Bioessays; 1997 Feb; 19(2):167-73. PubMed ID: 9046247
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The miniaturized nuclear genome of eukaryotic endosymbiont contains genes that overlap, genes that are cotranscribed, and the smallest known spliceosomal introns.
    Gilson PR; McFadden GI
    Proc Natl Acad Sci U S A; 1996 Jul; 93(15):7737-42. PubMed ID: 8755545
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evidence for nucleomorph to host nucleus gene transfer: light-harvesting complex proteins from cryptomonads and chlorarachniophytes.
    Deane JA; Fraunholz M; Su V; Maier U-G ; Martin W; Durnford DG; McFadden GI
    Protist; 2000 Oct; 151(3):239-52. PubMed ID: 11079769
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Proteomics reveals plastid- and periplastid-targeted proteins in the chlorarachniophyte alga Bigelowiella natans.
    Hopkins JF; Spencer DF; Laboissiere S; Neilson JA; Eveleigh RJ; Durnford DG; Gray MW; Archibald JM
    Genome Biol Evol; 2012; 4(12):1391-406. PubMed ID: 23221610
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The chlorarachniophyte: a cell with two different nuclei and two different telomeres.
    Gilson P; McFadden GI
    Chromosoma; 1995 May; 103(9):635-41. PubMed ID: 7587586
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The chloroplast division protein FtsZ is encoded by a nucleomorph gene in cryptomonads.
    Fraunholz MJ; Moerschel E; Maier UG
    Mol Gen Genet; 1998 Nov; 260(2-3):207-11. PubMed ID: 9862473
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Lineage-specific variations of congruent evolution among DNA sequences from three genomes, and relaxed selective constraints on rbcL in Cryptomonas (Cryptophyceae).
    Hoef-Emden K; Tran HD; Melkonian M
    BMC Evol Biol; 2005 Oct; 5():56. PubMed ID: 16232313
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Chimeric conundra: are nucleomorphs and chromists monophyletic or polyphyletic?
    Cavalier-Smith T; Allsopp MT; Chao EE
    Proc Natl Acad Sci U S A; 1994 Nov; 91(24):11368-72. PubMed ID: 7972066
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nucleus-to-nucleus gene transfer and protein retargeting into a remnant cytoplasm of cryptophytes and diatoms.
    Gould SB; Sommer MS; Kroth PG; Gile GH; Keeling PJ; Maier UG
    Mol Biol Evol; 2006 Dec; 23(12):2413-22. PubMed ID: 16971693
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids.
    Nozaki H; Matsuzaki M; Takahara M; Misumi O; Kuroiwa H; Hasegawa M; Shin-i T; Kohara Y; Ogasawara N; Kuroiwa T
    J Mol Evol; 2003 Apr; 56(4):485-97. PubMed ID: 12664168
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification and characterization of a eukaryotically encoded rubredoxin in a cryptomonad alga.
    Wastl J; Sticht H; Maier UG; Rösch P; Hoffmann S
    FEBS Lett; 2000 Apr; 471(2-3):191-6. PubMed ID: 10767421
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multiple independent losses of photosynthesis and differing evolutionary rates in the genus Cryptomonas (Cryptophyceae): combined phylogenetic analyses of DNA sequences of the nuclear and the nucleomorph ribosomal operons.
    Hoef-Emden K
    J Mol Evol; 2005 Feb; 60(2):183-95. PubMed ID: 15785847
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molecular phylogeny and evolution of the plastid and nuclear encoded cbbX genes in the unicellular red alga Cyanidioschyzon merolae.
    Fujita K; Ehira S; Tanaka K; Asai K; Ohta N
    Genes Genet Syst; 2008 Apr; 83(2):127-33. PubMed ID: 18506096
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Der1-mediated preprotein import into the periplastid compartment of chromalveolates?
    Sommer MS; Gould SB; Lehmann P; Gruber A; Przyborski JM; Maier UG
    Mol Biol Evol; 2007 Apr; 24(4):918-28. PubMed ID: 17244602
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The complete plastid genome sequence of the parasitic green alga Helicosporidium sp. is highly reduced and structured.
    de Koning AP; Keeling PJ
    BMC Biol; 2006 Apr; 4():12. PubMed ID: 16630350
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The presence of a nucleomorph hsp70 gene is a common feature of Cryptophyta and Chlorarachniophyta.
    Rensing SA; Goddemeier M; Hofmann CJ; Maier UG
    Curr Genet; 1994; 26(5-6):451-5. PubMed ID: 7874738
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Substitution rate calibration of small subunit ribosomal RNA identifies chlorarachniophyte endosymbionts as remnants of green algae.
    Van de Peer Y; Rensing SA; Maier UG; De Wachter R
    Proc Natl Acad Sci U S A; 1996 Jul; 93(15):7732-6. PubMed ID: 8755544
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid-containing alga Bigelowiella natans.
    Archibald JM; Rogers MB; Toop M; Ishida K; Keeling PJ
    Proc Natl Acad Sci U S A; 2003 Jun; 100(13):7678-83. PubMed ID: 12777624
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.