BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 21147880)

  • 101. The plastid genome of the red macroalga Grateloupia taiwanensis (Halymeniaceae).
    DePriest MS; Bhattacharya D; López-Bautista JM
    PLoS One; 2013; 8(7):e68246. PubMed ID: 23894297
    [TBL] [Abstract][Full Text] [Related]  

  • 102. The large ribosomal protein gene cluster of a cryptomonad plastid: gene organization, sequence and evolutionary implications.
    Wang SL; Liu XQ; Douglas SE
    Biochem Mol Biol Int; 1997 Apr; 41(5):1035-44. PubMed ID: 9137835
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Evolutionary origin of cryptomonad microalgae: two novel chloroplast/cytosol-specific GAPDH genes as potential markers of ancestral endosymbiont and host cell components.
    Liaud MF; Brandt U; Scherzinger M; Cerff R
    J Mol Evol; 1997; 44 Suppl 1():S28-37. PubMed ID: 9071009
    [TBL] [Abstract][Full Text] [Related]  

  • 104. A three-genome ultraconserved element phylogeny of cryptophytes.
    Greenwold MJ; Merritt K; Richardson TL; Dudycha JL
    Protist; 2023 Dec; 174(6):125994. PubMed ID: 37935085
    [TBL] [Abstract][Full Text] [Related]  

  • 105. A plastid without a genome: evidence from the nonphotosynthetic green algal genus Polytomella.
    Smith DR; Lee RW
    Plant Physiol; 2014 Apr; 164(4):1812-9. PubMed ID: 24563281
    [TBL] [Abstract][Full Text] [Related]  

  • 106. What Happened before Losses of Photosynthesis in Cryptophyte Algae?
    Suzuki S; Matsuzaki R; Yamaguchi H; Kawachi M
    Mol Biol Evol; 2022 Feb; 39(2):. PubMed ID: 35079797
    [TBL] [Abstract][Full Text] [Related]  

  • 107. The photosynthetic endosymbiont in cryptomonad cells produces both chloroplast and cytoplasmic-type ribosomes.
    McFadden GI; Gilson PR; Douglas SE
    J Cell Sci; 1994 Feb; 107 ( Pt 2)():649-57. PubMed ID: 8207087
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Red and problematic green phylogenetic signals among thousands of nuclear genes from the photosynthetic and apicomplexa-related Chromera velia.
    Woehle C; Dagan T; Martin WF; Gould SB
    Genome Biol Evol; 2011; 3():1220-30. PubMed ID: 21965651
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Changes in the transcriptome, ploidy, and optimal light intensity of a cryptomonad upon integration into a kleptoplastic dinoflagellate.
    Onuma R; Hirooka S; Kanesaki Y; Fujiwara T; Yoshikawa H; Miyagishima SY
    ISME J; 2020 Oct; 14(10):2407-2423. PubMed ID: 32514116
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Do red and green make brown?: perspectives on plastid acquisitions within chromalveolates.
    Dorrell RG; Smith AG
    Eukaryot Cell; 2011 Jul; 10(7):856-68. PubMed ID: 21622904
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Systematics of a kleptoplastidal dinoflagellate, Gymnodinium eucyaneum Hu (Dinophyceae), and its cryptomonad endosymbiont.
    Xia S; Zhang Q; Zhu H; Cheng Y; Liu G; Hu Z
    PLoS One; 2013; 8(1):e53820. PubMed ID: 23308288
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Palindromic genes in the linear mitochondrial genome of the nonphotosynthetic green alga Polytomella magna.
    Smith DR; Hua J; Archibald JM; Lee RW
    Genome Biol Evol; 2013; 5(9):1661-7. PubMed ID: 23940100
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Genome assembly of
    Guo L; Liang S; Zhang Z; Liu H; Wang S; Pan K; Xu J; Ren X; Pei S; Yang G
    Commun Biol; 2019; 2():249. PubMed ID: 31286066
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Minimally destructive sampling of type specimens of Pyropia (Bangiales, Rhodophyta) recovers complete plastid and mitochondrial genomes.
    Hughey JR; Gabrielson PW; Rohmer L; Tortolani J; Silva M; Miller KA; Young JD; Martell C; Ruediger E
    Sci Rep; 2014 Jun; 4():5113. PubMed ID: 24894641
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Morphological diversity between culture strains of a chlorarachniophyte, Lotharella globosa.
    Hirakawa Y; Howe A; James ER; Keeling PJ
    PLoS One; 2011; 6(8):e23193. PubMed ID: 21858028
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features.
    Derelle E; Ferraz C; Rombauts S; Rouzé P; Worden AZ; Robbens S; Partensky F; Degroeve S; Echeynié S; Cooke R; Saeys Y; Wuyts J; Jabbari K; Bowler C; Panaud O; Piégu B; Ball SG; Ral JP; Bouget FY; Piganeau G; De Baets B; Picard A; Delseny M; Demaille J; Van de Peer Y; Moreau H
    Proc Natl Acad Sci U S A; 2006 Aug; 103(31):11647-52. PubMed ID: 16868079
    [TBL] [Abstract][Full Text] [Related]  

  • 117. [Advances on the genome of algae].
    Lai XJ; Chen HM; Yang R; Yan XJ
    Yi Chuan; 2013 Jun; 35(6):735-44. PubMed ID: 23774018
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Nuclear DNA content estimates in multicellular green, red and brown algae: phylogenetic considerations.
    Kapraun DF
    Ann Bot; 2005 Jan; 95(1):7-44. PubMed ID: 15596456
    [TBL] [Abstract][Full Text] [Related]  

  • 119. The rise and fall of Picobiliphytes: how assumed autotrophs turned out to be heterotrophs.
    Moreira D; López-García P
    Bioessays; 2014 May; 36(5):468-74. PubMed ID: 24615955
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Cryptomonad biliproteins - an evolutionary perspective.
    Glazer AN; Wedemayer GJ
    Photosynth Res; 1995 Nov; 46(1-2):93-105. PubMed ID: 24301572
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.