These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 21148195)

  • 1. Simulated environmental risk estimation of engineered nanomaterials: a case of cosmetics in Johannesburg City.
    Musee N
    Hum Exp Toxicol; 2011 Sep; 30(9):1181-95. PubMed ID: 21148195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The antibacterial effects of engineered nanomaterials: implications for wastewater treatment plants.
    Musee N; Thwala M; Nota N
    J Environ Monit; 2011 May; 13(5):1164-83. PubMed ID: 21505709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensors as tools for quantitation, nanotoxicity and nanomonitoring assessment of engineered nanomaterials.
    Sadik OA; Zhou AL; Kikandi S; Du N; Wang Q; Varner K
    J Environ Monit; 2009 Oct; 11(10):1782-800. PubMed ID: 19809701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Possibilities and limitations of modeling environmental exposure to engineered nanomaterials by probabilistic material flow analysis.
    Gottschalk F; Sonderer T; Scholz RW; Nowack B
    Environ Toxicol Chem; 2010 May; 29(5):1036-48. PubMed ID: 20821538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeled environmental concentrations of engineered nanomaterials (TiO(2), ZnO, Ag, CNT, Fullerenes) for different regions.
    Gottschalk F; Sonderer T; Scholz RW; Nowack B
    Environ Sci Technol; 2009 Dec; 43(24):9216-22. PubMed ID: 20000512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental risk assessment of hydrotropes in the United States, Europe, and Australia.
    Stanton K; Tibazarwa C; Certa H; Greggs W; Hillebold D; Jovanovich L; Woltering D; Sedlak R
    Integr Environ Assess Manag; 2010 Jan; 6(1):155-63. PubMed ID: 19558203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The release of engineered nanomaterials to the environment.
    Gottschalk F; Nowack B
    J Environ Monit; 2011 May; 13(5):1145-55. PubMed ID: 21387066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles.
    Blaser SA; Scheringer M; Macleod M; Hungerbühler K
    Sci Total Environ; 2008 Feb; 390(2-3):396-409. PubMed ID: 18031795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental exposure assessment of engineered nanoparticles: why REACH needs adjustment.
    Meesters JA; Veltman K; Hendriks AJ; van de Meent D
    Integr Environ Assess Manag; 2013 Jul; 9(3):e15-26. PubMed ID: 23633247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the potential risks to zebrafish posed by environmentally relevant copper and silver nanoparticles.
    Chio CP; Chen WY; Chou WC; Hsieh NH; Ling MP; Liao CM
    Sci Total Environ; 2012 Mar; 420():111-8. PubMed ID: 22326136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fate and risks of nanomaterials in aquatic and terrestrial environments.
    Batley GE; Kirby JK; McLaughlin MJ
    Acc Chem Res; 2013 Mar; 46(3):854-62. PubMed ID: 22759090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probabilistic environmental risk assessment of five nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes).
    Coll C; Notter D; Gottschalk F; Sun T; Som C; Nowack B
    Nanotoxicology; 2016; 10(4):436-44. PubMed ID: 26554717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review of the detection, fate and effects of engineered nanomaterials in wastewater treatment plants.
    Neale PA; Jämting ÅK; Escher BI; Herrmann J
    Water Sci Technol; 2013; 68(7):1440-53. PubMed ID: 24135091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineered nanomaterials in rivers--exposure scenarios for Switzerland at high spatial and temporal resolution.
    Gottschalk F; Ort C; Scholz RW; Nowack B
    Environ Pollut; 2011 Dec; 159(12):3439-45. PubMed ID: 21890252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Guidance for the prognostic risk assessment of nanomaterials in aquatic ecosystems.
    Koelmans AA; Diepens NJ; Velzeboer I; Besseling E; Quik JT; van de Meent D
    Sci Total Environ; 2015 Dec; 535():141-9. PubMed ID: 25684040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model for screening and prioritizing consumer nanoproduct risks: A case study from South Africa.
    Musee N
    Environ Int; 2017 Mar; 100():121-131. PubMed ID: 28089582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanomaterials and the environment: a review for the biennium 2008-2010.
    Peralta-Videa JR; Zhao L; Lopez-Moreno ML; de la Rosa G; Hong J; Gardea-Torresdey JL
    J Hazard Mater; 2011 Feb; 186(1):1-15. PubMed ID: 21134718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Occurrence and removal of titanium at full scale wastewater treatment plants: implications for TiO2 nanomaterials.
    Westerhoff P; Song G; Hristovski K; Kiser MA
    J Environ Monit; 2011 May; 13(5):1195-203. PubMed ID: 21494702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probabilistic modeling of the flows and environmental risks of nano-silica.
    Wang Y; Kalinina A; Sun T; Nowack B
    Sci Total Environ; 2016 Mar; 545-546():67-76. PubMed ID: 26745294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comprehensive environmental assessment approach to engineered nanomaterials.
    Davis JM
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2013; 5(2):139-49. PubMed ID: 23255303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.