BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 21148291)

  • 21. The Hypersaline Archaeal Histones HpyA and HstA Are DNA Binding Proteins That Defy Categorization According to Commonly Used Functional Criteria.
    Sakrikar S; Hackley RK; Martinez-Pastor M; Darnell CL; Vreugdenhil A; Schmid AK
    mBio; 2023 Apr; 14(2):e0344922. PubMed ID: 36779711
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gene regulation of two ferredoxin:NADP
    Hidese R; Yamashita K; Kawazuma K; Kanai T; Atomi H; Imanaka T; Fujiwara S
    Extremophiles; 2017 Sep; 21(5):903-917. PubMed ID: 28688056
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermococcus kodakarensis provides a versatile hyperthermophilic archaeal platform for protein expression.
    Scott KA; Williams SA; Santangelo TJ
    Methods Enzymol; 2021; 659():243-273. PubMed ID: 34752288
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermococcus kodakarensis encodes three MCM homologs but only one is essential.
    Pan M; Santangelo TJ; Li Z; Reeve JN; Kelman Z
    Nucleic Acids Res; 2011 Dec; 39(22):9671-80. PubMed ID: 21821658
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Archaeal DNA polymerase D but not DNA polymerase B is required for genome replication in Thermococcus kodakarensis.
    Cubonová L; Richardson T; Burkhart BW; Kelman Z; Connolly BA; Reeve JN; Santangelo TJ
    J Bacteriol; 2013 May; 195(10):2322-8. PubMed ID: 23504010
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The hyperthermophilic archaeon Thermococcus kodakarensis is resistant to pervasive negative supercoiling activity of DNA gyrase.
    Villain P; da Cunha V; Villain E; Forterre P; Oberto J; Catchpole R; Basta T
    Nucleic Acids Res; 2021 Dec; 49(21):12332-12347. PubMed ID: 34755863
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genetic examination and mass balance analysis of pyruvate/amino acid oxidation pathways in the hyperthermophilic archaeon Thermococcus kodakarensis.
    Nohara K; Orita I; Nakamura S; Imanaka T; Fukui T
    J Bacteriol; 2014 Nov; 196(22):3831-9. PubMed ID: 25157082
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of TrmB and TrmB-like transcriptional regulators for sugar transport and metabolism in the hyperthermophilic archaeon Pyrococcus furiosus.
    Lee SJ; Surma M; Hausner W; Thomm M; Boos W
    Arch Microbiol; 2008 Sep; 190(3):247-56. PubMed ID: 18470695
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Complete genome sequence of the hyperthermophilic, piezophilic, heterotrophic, and carboxydotrophic archaeon Thermococcus barophilus MP.
    Vannier P; Marteinsson VT; Fridjonsson OH; Oger P; Jebbar M
    J Bacteriol; 2011 Mar; 193(6):1481-2. PubMed ID: 21217005
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phytoene production utilizing the isoprenoid biosynthesis capacity of Thermococcus kodakarensis.
    Fuke T; Sato T; Jha S; Tansengco ML; Atomi H
    Extremophiles; 2018 Mar; 22(2):301-313. PubMed ID: 29340843
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Complete genome sequence of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 and comparison with Pyrococcus genomes.
    Fukui T; Atomi H; Kanai T; Matsumi R; Fujiwara S; Imanaka T
    Genome Res; 2005 Mar; 15(3):352-63. PubMed ID: 15710748
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Mutant Chaperonin That Is Functional at Lower Temperatures Enables Hyperthermophilic Archaea To Grow under Cold-Stress Conditions.
    Gao L; Imanaka T; Fujiwara S
    J Bacteriol; 2015 Aug; 197(16):2642-52. PubMed ID: 26013483
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Architectures of archaeal GINS complexes, essential DNA replication initiation factors.
    Oyama T; Ishino S; Fujino S; Ogino H; Shirai T; Mayanagi K; Saito M; Nagasawa N; Ishino Y; Morikawa K
    BMC Biol; 2011 Apr; 9():28. PubMed ID: 21527023
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crystal structure of GTP-dependent dephospho-coenzyme A kinase from the hyperthermophilic archaeon, Thermococcus kodakarensis.
    Kita A; Ishida Y; Shimosaka T; Michimori Y; Makarova K; Koonin E; Atomi H; Miki K
    Proteins; 2024 Jun; 92(6):768-775. PubMed ID: 38235908
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of an archaeal malic enzyme from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1.
    Fukuda W; Ismail YS; Fukui T; Atomi H; Imanaka T
    Archaea; 2005 May; 1(5):293-301. PubMed ID: 15876562
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification and characterization of an archaeal ketopantoate reductase and its involvement in regulation of coenzyme A biosynthesis.
    Tomita H; Imanaka T; Atomi H
    Mol Microbiol; 2013 Oct; 90(2):307-21. PubMed ID: 23941541
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetic analyses of the functions of [NiFe]-hydrogenase maturation endopeptidases in the hyperthermophilic archaeon Thermococcus kodakarensis.
    Kanai T; Yasukochi A; Simons JR; Scott JW; Fukuda W; Imanaka T; Atomi H
    Extremophiles; 2017 Jan; 21(1):27-39. PubMed ID: 27738851
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of Dephospho-Coenzyme A (Dephospho-CoA) Kinase in Thermococcus kodakarensis and Elucidation of the Entire CoA Biosynthesis Pathway in Archaea.
    Shimosaka T; Makarova KS; Koonin EV; Atomi H
    mBio; 2019 Jul; 10(4):. PubMed ID: 31337720
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An archaeal ADP-dependent serine kinase involved in cysteine biosynthesis and serine metabolism.
    Makino Y; Sato T; Kawamura H; Hachisuka SI; Takeno R; Imanaka T; Atomi H
    Nat Commun; 2016 Nov; 7():13446. PubMed ID: 27857065
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Formate hydrogenlyase in the hyperthermophilic archaeon, Thermococcus litoralis.
    Takács M; Tóth A; Bogos B; Varga A; Rákhely G; Kovács KL
    BMC Microbiol; 2008 Jun; 8():88. PubMed ID: 18522724
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.