BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 21148291)

  • 41. Archaeal RNA polymerase subunits E and F are not required for transcription in vitro, but a Thermococcus kodakarensis mutant lacking subunit F is temperature-sensitive.
    Hirata A; Kanai T; Santangelo TJ; Tajiri M; Manabe K; Reeve JN; Imanaka T; Murakami KS
    Mol Microbiol; 2008 Nov; 70(3):623-33. PubMed ID: 18786148
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Defining the RNaseH2 enzyme-initiated ribonucleotide excision repair pathway in Archaea.
    Heider MR; Burkhart BW; Santangelo TJ; Gardner AF
    J Biol Chem; 2017 May; 292(21):8835-8845. PubMed ID: 28373277
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Growth phase-dependent expression and degradation of histones in the thermophilic archaeon Thermococcus zilligii.
    Dinger ME; Baillie GJ; Musgrave DR
    Mol Microbiol; 2000 May; 36(4):876-85. PubMed ID: 10844675
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Thermococcus kodakarensis has two functional PCNA homologs but only one is required for viability.
    Pan M; Santangelo TJ; Čuboňová L; Li Z; Metangmo H; Ladner J; Hurwitz J; Reeve JN; Kelman Z
    Extremophiles; 2013 May; 17(3):453-61. PubMed ID: 23525944
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Different roles of two transcription factor B proteins in the hyperthermophilic archaeon Thermococcus kodakarensis.
    Hidese R; Nishikawa R; Gao L; Katano M; Imai T; Kato S; Kanai T; Atomi H; Imanaka T; Fujiwara S
    Extremophiles; 2014 May; 18(3):573-88. PubMed ID: 24627188
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Expression profiles and physiological roles of two types of prefoldins from the hyperthermophilic archaeon Thermococcus kodakaraensis.
    Danno A; Fukuda W; Yoshida M; Aki R; Tanaka T; Kanai T; Imanaka T; Fujiwara S
    J Mol Biol; 2008 Oct; 382(2):298-311. PubMed ID: 18662698
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Genetic studies on the virus-like regions in the genome of hyperthermophilic archaeon, Thermococcus kodakarensis.
    Tagashira K; Fukuda W; Matsubara M; Kanai T; Atomi H; Imanaka T
    Extremophiles; 2013 Jan; 17(1):153-60. PubMed ID: 23224520
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The crystal structure of a novel phosphopantothenate synthetase from the hyperthermophilic archaea, Thermococcus onnurineus NA1.
    Kim MK; An YJ; Cha SS
    Biochem Biophys Res Commun; 2013 Oct; 439(4):533-8. PubMed ID: 24021277
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Lysine Biosynthesis of Thermococcus kodakarensis with the Capacity to Function as an Ornithine Biosynthetic System.
    Yoshida A; Tomita T; Atomi H; Kuzuyama T; Nishiyama M
    J Biol Chem; 2016 Oct; 291(41):21630-21643. PubMed ID: 27566549
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Crystal structure of pantoate kinase from Thermococcus kodakarensis.
    Kita A; Kishimoto A; Shimosaka T; Tomita H; Yokooji Y; Imanaka T; Atomi H; Miki K
    Proteins; 2020 May; 88(5):718-724. PubMed ID: 31697438
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Archaeal histone-based chromatin structures regulate transcription elongation rates.
    Wenck BR; Vickerman RL; Burkhart BW; Santangelo TJ
    Commun Biol; 2024 Feb; 7(1):236. PubMed ID: 38413771
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Genome-wide transcriptional response of the archaeon Thermococcus gammatolerans to cadmium.
    Lagorce A; Fourçans A; Dutertre M; Bouyssiere B; Zivanovic Y; Confalonieri F
    PLoS One; 2012; 7(7):e41935. PubMed ID: 22848664
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Metabolic versatility and indigenous origin of the archaeon Thermococcus sibiricus, isolated from a siberian oil reservoir, as revealed by genome analysis.
    Mardanov AV; Ravin NV; Svetlitchnyi VA; Beletsky AV; Miroshnichenko ML; Bonch-Osmolovskaya EA; Skryabin KG
    Appl Environ Microbiol; 2009 Jul; 75(13):4580-8. PubMed ID: 19447963
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Complete genome sequence of hyperthermophilic archaeon Thermococcus sp. ES1.
    Jung JH; Kim YT; Jeon EJ; Seo DH; Hensley SA; Holden JF; Lee JH; Park CS
    J Biotechnol; 2014 Mar; 174():14-5. PubMed ID: 24472758
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bacterial mode of replication with eukaryotic-like machinery in a hyperthermophilic archaeon.
    Myllykallio H; Lopez P; López-García P; Heilig R; Saurin W; Zivanovic Y; Philippe H; Forterre P
    Science; 2000 Jun; 288(5474):2212-5. PubMed ID: 10864870
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Novel monofunctional histidinol-phosphate phosphatase of the DDDD superfamily of phosphohydrolases.
    Lee HS; Cho Y; Lee JH; Kang SG
    J Bacteriol; 2008 Apr; 190(7):2629-32. PubMed ID: 18223080
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biochemical and genetical analyses of the three mcm genes from the hyperthermophilic archaeon, Thermococcus kodakarensis.
    Ishino S; Fujino S; Tomita H; Ogino H; Takao K; Daiyasu H; Kanai T; Atomi H; Ishino Y
    Genes Cells; 2011 Dec; 16(12):1176-89. PubMed ID: 22093166
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Polarity in archaeal operon transcription in Thermococcus kodakaraensis.
    Santangelo TJ; Cubonová L; Matsumi R; Atomi H; Imanaka T; Reeve JN
    J Bacteriol; 2008 Mar; 190(6):2244-8. PubMed ID: 18192385
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The Cdc45/RecJ-like protein forms a complex with GINS and MCM, and is important for DNA replication in Thermococcus kodakarensis.
    Nagata M; Ishino S; Yamagami T; Ogino H; Simons JR; Kanai T; Atomi H; Ishino Y
    Nucleic Acids Res; 2017 Oct; 45(18):10693-10705. PubMed ID: 28977567
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mutational analysis of Thermococcus kodakarensis Endonuclease III reveals the roles of evolutionarily conserved residues.
    Shiraishi M; Mizutani K; Yamamoto J; Iwai S
    DNA Repair (Amst); 2020 Jun; 90():102859. PubMed ID: 32408140
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.