These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 21148301)

  • 21. Regulation of flagellar dynein by phosphorylation of a 138-kD inner arm dynein intermediate chain.
    Habermacher G; Sale WS
    J Cell Biol; 1997 Jan; 136(1):167-76. PubMed ID: 9008711
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Polarity and asymmetry in the arrangement of dynein and related structures in the Chlamydomonas axoneme.
    Bui KH; Yagi T; Yamamoto R; Kamiya R; Ishikawa T
    J Cell Biol; 2012 Sep; 198(5):913-25. PubMed ID: 22945936
    [TBL] [Abstract][Full Text] [Related]  

  • 23. bop5 Mutations reveal new roles for the IC138 phosphoprotein in the regulation of flagellar motility and asymmetric waveforms.
    VanderWaal KE; Yamamoto R; Wakabayashi K; Fox L; Kamiya R; Dutcher SK; Bayly PV; Sale WS; Porter ME
    Mol Biol Cell; 2011 Aug; 22(16):2862-74. PubMed ID: 21697502
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Central pair apparatus enhances outer-arm dynein activities through regulation of inner-arm dyneins.
    Kikushima K
    Cell Motil Cytoskeleton; 2009 May; 66(5):272-80. PubMed ID: 19347929
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional diversity of axonemal dyneins as studied in Chlamydomonas mutants.
    Kamiya R
    Int Rev Cytol; 2002; 219():115-55. PubMed ID: 12211628
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Slow axonemal dynein e facilitates the motility of faster dynein c.
    Shimizu Y; Sakakibara H; Kojima H; Oiwa K
    Biophys J; 2014 May; 106(10):2157-65. PubMed ID: 24853744
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional binding of inner-arm dyneins with demembranated flagella of Chlamydomonas mutants.
    Yamamoto R; Yagi T; Kamiya R
    Cell Motil Cytoskeleton; 2006 May; 63(5):258-65. PubMed ID: 16518818
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three distinct inner dynein arms in Chlamydomonas flagella: molecular composition and location in the axoneme.
    Piperno G; Ramanis Z; Smith EF; Sale WS
    J Cell Biol; 1990 Feb; 110(2):379-89. PubMed ID: 2137128
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of the outer-inner dynein linker as a hub controller for axonemal dynein activities.
    Oda T; Yagi T; Yanagisawa H; Kikkawa M
    Curr Biol; 2013 Apr; 23(8):656-64. PubMed ID: 23583547
    [TBL] [Abstract][Full Text] [Related]  

  • 30. IC97 is a novel intermediate chain of I1 dynein that interacts with tubulin and regulates interdoublet sliding.
    Wirschell M; Yang C; Yang P; Fox L; Yanagisawa HA; Kamiya R; Witman GB; Porter ME; Sale WS
    Mol Biol Cell; 2009 Jul; 20(13):3044-54. PubMed ID: 19420136
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Beat frequency difference between the two flagella of Chlamydomonas depends on the attachment site of outer dynein arms on the outer-doublet microtubules.
    Takada S; Kamiya R
    Cell Motil Cytoskeleton; 1997; 36(1):68-75. PubMed ID: 8986378
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microtubule translocation caused by three subspecies of inner-arm dynein from Chlamydomonas flagella.
    Kagami O; Takada S; Kamiya R
    FEBS Lett; 1990 May; 264(2):179-82. PubMed ID: 2141576
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Asymmetry of inner dynein arms and inter-doublet links in Chlamydomonas flagella.
    Bui KH; Sakakibara H; Movassagh T; Oiwa K; Ishikawa T
    J Cell Biol; 2009 Aug; 186(3):437-46. PubMed ID: 19667131
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanical properties of inner-arm dynein-f (dynein I1) studied with in vitro motility assays.
    Kotani N; Sakakibara H; Burgess SA; Kojima H; Oiwa K
    Biophys J; 2007 Aug; 93(3):886-94. PubMed ID: 17496036
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The IDA3 adapter, required for intraflagellar transport of I1 dynein, is regulated by ciliary length.
    Hunter EL; Lechtreck K; Fu G; Hwang J; Lin H; Gokhale A; Alford LM; Lewis B; Yamamoto R; Kamiya R; Yang F; Nicastro D; Dutcher SK; Wirschell M; Sale WS
    Mol Biol Cell; 2018 Apr; 29(8):886-896. PubMed ID: 29467251
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tubulin glycylation controls ciliary motility through modulation of outer-arm dyneins.
    Kubo T; Sasaki R; Oda T
    Mol Biol Cell; 2024 Jul; 35(7):ar90. PubMed ID: 38758663
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Building blocks of the nexin-dynein regulatory complex in Chlamydomonas flagella.
    Lin J; Tritschler D; Song K; Barber CF; Cobb JS; Porter ME; Nicastro D
    J Biol Chem; 2011 Aug; 286(33):29175-29191. PubMed ID: 21700706
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of dynein-driven microtubule sliding by an axonemal kinase and phosphatase in Chlamydomonas flagella.
    Habermacher G; Sale WS
    Cell Motil Cytoskeleton; 1995; 32(2):106-9. PubMed ID: 8681389
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The MIA complex is a conserved and novel dynein regulator essential for normal ciliary motility.
    Yamamoto R; Song K; Yanagisawa HA; Fox L; Yagi T; Wirschell M; Hirono M; Kamiya R; Nicastro D; Sale WS
    J Cell Biol; 2013 Apr; 201(2):263-78. PubMed ID: 23569216
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Systematic comparison of in vitro motile properties between Chlamydomonas wild-type and mutant outer arm dyneins each lacking one of the three heavy chains.
    Furuta A; Yagi T; Yanagisawa HA; Higuchi H; Kamiya R
    J Biol Chem; 2009 Feb; 284(9):5927-35. PubMed ID: 19124458
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.