These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 21148312)

  • 1. Mono-ADP-ribosylation of the G protein betagamma dimer is modulated by hormones and inhibited by Arf6.
    Dani N; Mayo E; Stilla A; Marchegiani A; Di Paola S; Corda D; Di Girolamo M
    J Biol Chem; 2011 Feb; 286(8):5995-6005. PubMed ID: 21148312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endogenous mono-ADP-ribosylation of the free Gbetagamma prevents stimulation of phosphoinositide 3-kinase-gamma and phospholipase C-beta2 and is activated by G-protein-coupled receptors.
    Lupi R; Dani N; Dietrich A; Marchegiani A; Turacchio S; Berrie CP; Moss J; Gierschik P; Corda D; Di Girolamo M
    Biochem J; 2002 Nov; 367(Pt 3):825-32. PubMed ID: 12149126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endogenous ADP-ribosylation of the G protein beta subunit prevents the inhibition of type 1 adenylyl cyclase.
    Lupi R; Corda D; Di Girolamo M
    J Biol Chem; 2000 Mar; 275(13):9418-24. PubMed ID: 10734087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Third intracellular loop of glucagon like-peptide-1 receptor is coupled with endogenous mono-ADP-ribosyltransferase - novel type of receptor regulation?
    Deželak M; Bavec A
    Eur J Pharmacol; 2011 Sep; 666(1-3):35-42. PubMed ID: 21635883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A role of intracellular mono-ADP-ribosylation in cancer biology.
    Scarpa ES; Fabrizio G; Di Girolamo M
    FEBS J; 2013 Aug; 280(15):3551-62. PubMed ID: 23590234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucagon like-peptide-1 receptor is covalently modified by endogenous mono-ADP-ribosyltransferase.
    Deželak M; Bavec A
    Mol Biol Rep; 2012 Apr; 39(4):4375-81. PubMed ID: 21901419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endogenous protein mono-ADP-ribosylation in Arabidopsis thaliana.
    Wang H; Liang Q; Cao K; Ge X
    Planta; 2011 Jun; 233(6):1287-92. PubMed ID: 21519881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ADP-ribosylated proteins as old and new drug targets for anticancer therapy: the example of ARF6.
    Dani N; Barbosa AJ; Del Rio A; Di Girolamo M
    Curr Pharm Des; 2013; 19(4):624-33. PubMed ID: 23016858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Auto-ADP-ribosylation of Pseudomonas aeruginosa ExoS.
    Riese MJ; Goehring UM; Ehrmantraut ME; Moss J; Barbieri JT; Aktories K; Schmidt G
    J Biol Chem; 2002 Apr; 277(14):12082-8. PubMed ID: 11821389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ric-8 enhances G protein betagamma-dependent signaling in response to betagamma-binding peptides in intact cells.
    Malik S; Ghosh M; Bonacci TM; Tall GG; Smrcka AV
    Mol Pharmacol; 2005 Jul; 68(1):129-36. PubMed ID: 15802611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The alpha 7 integrin as a target protein for cell surface mono-ADP-ribosylation in muscle cells.
    Zolkiewska A; Moss J
    Adv Exp Med Biol; 1997; 419():297-303. PubMed ID: 9193669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phospholipase D in rat myometrium: occurrence of a membrane-bound ARF6 (ADP-ribosylation factor 6)-regulated activity controlled by betagamma subunits of heterotrimeric G-proteins.
    Le Stunff H; Dokhac L; Bourgoin S; Bader MF; Harbon S
    Biochem J; 2000 Dec; 352 Pt 2(Pt 2):491-9. PubMed ID: 11085943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suppression of GTP/T alpha-dependent activation of cGMP phosphodiesterase by ADP-ribosylation by its gamma subunit in amphibian rod photoreceptor membranes.
    Bondarenko VA; Yamazaki M; Hayashi F; Yamazaki A
    Biochemistry; 1999 Jun; 38(24):7755-63. PubMed ID: 10387015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generating Protein-Linked and Protein-Free Mono-, Oligo-, and Poly(ADP-Ribose) In Vitro.
    Lin KY; Huang D; Kraus WL
    Methods Mol Biol; 2018; 1813():91-108. PubMed ID: 30097863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TCDD-inducible poly-ADP-ribose polymerase (TIPARP/PARP7) mono-ADP-ribosylates and co-activates liver X receptors.
    Bindesbøll C; Tan S; Bott D; Cho T; Tamblyn L; MacPherson L; Grønning-Wang L; Nebb HI; Matthews J
    Biochem J; 2016 Apr; 473(7):899-910. PubMed ID: 26814197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Separation of the 24 kDa substrate for botulinum C3 ADP-ribosyltransferase and the cholera toxin ADP-ribosylation factor.
    Tsai SC; Adamik R; Moss J; Aktories K
    Biochem Biophys Res Commun; 1988 May; 152(3):957-61. PubMed ID: 3132159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiology of ADP-ribosylation.
    Koch-Nolte F; Ziegler M
    FEBS J; 2013 Aug; 280(15):3483. PubMed ID: 23773547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic overview of ADP-ribosylation reactions.
    Sung VM
    Biochimie; 2015 Jun; 113():35-46. PubMed ID: 25828806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Vitro Techniques for ADP-Ribosylated Substrate Identification.
    Grimaldi G; Catara G; Valente C; Corda D
    Methods Mol Biol; 2018; 1813():25-40. PubMed ID: 30097859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on G-protein alpha.betagamma heterotrimer formation reveal a putative S-prenyl-binding site in the alpha subunit.
    Dietrich A; Scheer A; Illenberger D; Kloog Y; Henis YI; Gierschik P
    Biochem J; 2003 Dec; 376(Pt 2):449-56. PubMed ID: 12952523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.