These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
606 related articles for article (PubMed ID: 21148393)
21. Patterns of variation at Ustilago maydis virulence clusters 2A and 19A largely reflect the demographic history of its populations. Kellner R; Hanschke C; Begerow D PLoS One; 2014; 9(6):e98837. PubMed ID: 24887029 [TBL] [Abstract][Full Text] [Related]
22. Protein glycosylation in the phytopathogen Ustilago maydis: From core oligosaccharide synthesis to the ER glycoprotein quality control system, a genomic analysis. Fernández-Alvarez A; Elías-Villalobos A; Ibeas JI Fungal Genet Biol; 2010 Sep; 47(9):727-35. PubMed ID: 20554055 [TBL] [Abstract][Full Text] [Related]
23. The Ustilago maydis repetitive effector Rsp3 blocks the antifungal activity of mannose-binding maize proteins. Ma LS; Wang L; Trippel C; Mendoza-Mendoza A; Ullmann S; Moretti M; Carsten A; Kahnt J; Reissmann S; Zechmann B; Bange G; Kahmann R Nat Commun; 2018 Apr; 9(1):1711. PubMed ID: 29703884 [TBL] [Abstract][Full Text] [Related]
24. Complementation of Ustilago maydis MAPK mutants by a wheat leaf rust, Puccinia triticina homolog: potential for functional analyses of rust genes. Hu G; Kamp A; Linning R; Naik S; Bakkeren G Mol Plant Microbe Interact; 2007 Jun; 20(6):637-47. PubMed ID: 17555272 [TBL] [Abstract][Full Text] [Related]
25. The Ustilago maydis forkhead transcription factor Fox1 is involved in the regulation of genes required for the attenuation of plant defenses during pathogenic development. Zahiri A; Heimel K; Wahl R; Rath M; Kämper J Mol Plant Microbe Interact; 2010 Sep; 23(9):1118-29. PubMed ID: 20687802 [TBL] [Abstract][Full Text] [Related]
30. The Biotrophic Development of Lanver D; Müller AN; Happel P; Schweizer G; Haas FB; Franitza M; Pellegrin C; Reissmann S; Altmüller J; Rensing SA; Kahmann R Plant Cell; 2018 Feb; 30(2):300-323. PubMed ID: 29371439 [TBL] [Abstract][Full Text] [Related]
31. The mating-type locus b of the sugarcane smut Sporisorium scitamineum is essential for mating, filamentous growth and pathogenicity. Yan M; Zhu G; Lin S; Xian X; Chang C; Xi P; Shen W; Huang W; Cai E; Jiang Z; Deng YZ; Zhang LH Fungal Genet Biol; 2016 Jan; 86():1-8. PubMed ID: 26563415 [TBL] [Abstract][Full Text] [Related]
32. Domestication of maize, sorghum, and sugarcane did not drive the divergence of their smut pathogens. Munkacsi AB; Stoxen S; May G Evolution; 2007 Feb; 61(2):388-403. PubMed ID: 17348948 [TBL] [Abstract][Full Text] [Related]
33. Compatibility in the Ustilago maydis-maize interaction requires inhibition of host cysteine proteases by the fungal effector Pit2. Mueller AN; Ziemann S; Treitschke S; Aßmann D; Doehlemann G PLoS Pathog; 2013 Feb; 9(2):e1003177. PubMed ID: 23459172 [TBL] [Abstract][Full Text] [Related]
34. Virulence of the maize smut Ustilago maydis is shaped by organ-specific effectors. Schilling L; Matei A; Redkar A; Walbot V; Doehlemann G Mol Plant Pathol; 2014 Oct; 15(8):780-9. PubMed ID: 25346968 [TBL] [Abstract][Full Text] [Related]
35. Deletion of the Ustilago maydis ortholog of the Aspergillus sporulation regulator medA affects mating and virulence through pheromone response. Chacko N; Gold S Fungal Genet Biol; 2012 Jun; 49(6):426-32. PubMed ID: 22537792 [TBL] [Abstract][Full Text] [Related]
36. The AGC Ser/Thr kinase Aga1 is essential for appressorium formation and maintenance of the actin cytoskeleton in the smut fungus Ustilago maydis. Berndt P; Lanver D; Kahmann R Mol Microbiol; 2010 Dec; 78(6):1484-99. PubMed ID: 21143319 [TBL] [Abstract][Full Text] [Related]
37. SUPPRESSOR OF APICAL DOMINANCE1 of Sporisorium reilianum Modulates Inflorescence Branching Architecture in Maize and Arabidopsis. Ghareeb H; Drechsler F; Löfke C; Teichmann T; Schirawski J Plant Physiol; 2015 Dec; 169(4):2789-804. PubMed ID: 26511912 [TBL] [Abstract][Full Text] [Related]
38. Virulence genes and the evolution of host specificity in plant-pathogenic fungi. van der Does HC; Rep M Mol Plant Microbe Interact; 2007 Oct; 20(10):1175-82. PubMed ID: 17918619 [TBL] [Abstract][Full Text] [Related]
39. Haplo-insufficiency for different genes differentially reduces pathogenicity and virulence in a fungal phytopathogen. Pham CD; Yu Z; Ben Lovely C; Agarwal C; Myers DA; Paul JA; Cooper M; Barati M; Perlin MH Fungal Genet Biol; 2012 Jan; 49(1):21-9. PubMed ID: 22146805 [TBL] [Abstract][Full Text] [Related]
40. Spa2 is required for morphogenesis but it is dispensable for pathogenicity in the phytopathogenic fungus Ustilago maydis. Carbó N; Pérez-Martín J Fungal Genet Biol; 2008 Sep; 45(9):1315-27. PubMed ID: 18674629 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]