These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
606 related articles for article (PubMed ID: 21148393)
41. Cross-species analysis between the maize smut fungi Ustilago maydis and Sporisorium reilianum highlights the role of transcriptional change of effector orthologs for virulence and disease. Zuo W; Depotter JRL; Gupta DK; Thines M; Doehlemann G New Phytol; 2021 Oct; 232(2):719-733. PubMed ID: 34270791 [TBL] [Abstract][Full Text] [Related]
44. Genome comparison of barley and maize smut fungi reveals targeted loss of RNA silencing components and species-specific presence of transposable elements. Laurie JD; Ali S; Linning R; Mannhaupt G; Wong P; Güldener U; Münsterkötter M; Moore R; Kahmann R; Bakkeren G; Schirawski J Plant Cell; 2012 May; 24(5):1733-45. PubMed ID: 22623492 [TBL] [Abstract][Full Text] [Related]
45. The pathogenic mechanisms of Tilletia horrida as revealed by comparative and functional genomics. Wang A; Pang L; Wang N; Ai P; Yin D; Li S; Deng Q; Zhu J; Liang Y; Zhu J; Li P; Zheng A Sci Rep; 2018 Oct; 8(1):15413. PubMed ID: 30337609 [TBL] [Abstract][Full Text] [Related]
46. Posttranscriptional control of growth and development in Ustilago maydis. Vollmeister E; Feldbrügge M Curr Opin Microbiol; 2010 Dec; 13(6):693-9. PubMed ID: 20880737 [TBL] [Abstract][Full Text] [Related]
47. A genome-based analysis of amino acid metabolism in the biotrophic plant pathogen Ustilago maydis. McCann MP; Snetselaar KM Fungal Genet Biol; 2008 Aug; 45 Suppl 1():S77-87. PubMed ID: 18579420 [TBL] [Abstract][Full Text] [Related]
48. Maize tumors caused by Ustilago maydis require organ-specific genes in host and pathogen. Skibbe DS; Doehlemann G; Fernandes J; Walbot V Science; 2010 Apr; 328(5974):89-92. PubMed ID: 20360107 [TBL] [Abstract][Full Text] [Related]
49. Two members of the Ustilago maydis velvet family influence teliospore development and virulence on maize seedlings. Karakkat BB; Gold SE; Covert SF Fungal Genet Biol; 2013 Dec; 61():111-9. PubMed ID: 24064149 [TBL] [Abstract][Full Text] [Related]
50. Sex in smut fungi: Structure, function and evolution of mating-type complexes. Bakkeren G; Kämper J; Schirawski J Fungal Genet Biol; 2008 Aug; 45 Suppl 1():S15-21. PubMed ID: 18501648 [TBL] [Abstract][Full Text] [Related]
52. An immunity-triggering effector from the Barley smut fungus Ustilago hordei resides in an Ustilaginaceae-specific cluster bearing signs of transposable element-assisted evolution. Ali S; Laurie JD; Linning R; Cervantes-Chávez JA; Gaudet D; Bakkeren G PLoS Pathog; 2014 Jul; 10(7):e1004223. PubMed ID: 24992661 [TBL] [Abstract][Full Text] [Related]
53. Regulation of Ustilago maydis dimorphism, sporulation, and pathogenic development by a transcription factor with a highly conserved APSES domain. García-Pedrajas MD; Baeza-Montañez L; Gold SE Mol Plant Microbe Interact; 2010 Feb; 23(2):211-22. PubMed ID: 20064064 [TBL] [Abstract][Full Text] [Related]
54. Genome sequencing of Sporisorium scitamineum provides insights into the pathogenic mechanisms of sugarcane smut. Que Y; Xu L; Wu Q; Liu Y; Ling H; Liu Y; Zhang Y; Guo J; Su Y; Chen J; Wang S; Zhang C BMC Genomics; 2014 Nov; 15(1):996. PubMed ID: 25406499 [TBL] [Abstract][Full Text] [Related]
55. Mating factor linkage and genome evolution in basidiomycetous pathogens of cereals. Bakkeren G; Jiang G; Warren RL; Butterfield Y; Shin H; Chiu R; Linning R; Schein J; Lee N; Hu G; Kupfer DM; Tang Y; Roe BA; Jones S; Marra M; Kronstad JW Fungal Genet Biol; 2006 Sep; 43(9):655-66. PubMed ID: 16793293 [TBL] [Abstract][Full Text] [Related]
56. A ToxA-like protein from Cochliobolus heterostrophus induces light-dependent leaf necrosis and acts as a virulence factor with host selectivity on maize. Lu S; Gillian Turgeon B; Edwards MC Fungal Genet Biol; 2015 Aug; 81():12-24. PubMed ID: 26051492 [TBL] [Abstract][Full Text] [Related]
57. Transcriptome Analysis of a Ustilago maydis ust1 Deletion Mutant Uncovers Involvement of Laccase and Polyketide Synthase Genes in Spore Development. Islamovic E; García-Pedrajas MD; Chacko N; Andrews DL; Covert SF; Gold SE Mol Plant Microbe Interact; 2015 Jan; 28(1):42-54. PubMed ID: 25226432 [TBL] [Abstract][Full Text] [Related]
58. Fungal development of the plant pathogen Ustilago maydis. Vollmeister E; Schipper K; Baumann S; Haag C; Pohlmann T; Stock J; Feldbrügge M FEMS Microbiol Rev; 2012 Jan; 36(1):59-77. PubMed ID: 21729109 [TBL] [Abstract][Full Text] [Related]
59. Utilizing virus-induced gene silencing for the functional characterization of maize genes during infection with the fungal pathogen Ustilago maydis. van der Linde K; Doehlemann G Methods Mol Biol; 2013; 975():47-60. PubMed ID: 23386294 [TBL] [Abstract][Full Text] [Related]
60. Use of PCR to detect infection of differentially susceptible maize cultivars using Ustilago maydis strains of variable virulence. Martínez-Espinoza AD; León-Ramírez CG; Singh N; Ruiz-Herrera J Int Microbiol; 2003 Jun; 6(2):117-20. PubMed ID: 12768432 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]