BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 21148401)

  • 1. Intestinal fructose transport and malabsorption in humans.
    Jones HF; Butler RN; Brooks DA
    Am J Physiol Gastrointest Liver Physiol; 2011 Feb; 300(2):G202-6. PubMed ID: 21148401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simple-sugar meals target GLUT2 at enterocyte apical membranes to improve sugar absorption: a study in GLUT2-null mice.
    Gouyon F; Caillaud L; Carriere V; Klein C; Dalet V; Citadelle D; Kellett GL; Thorens B; Leturque A; Brot-Laroche E
    J Physiol; 2003 Nov; 552(Pt 3):823-32. PubMed ID: 12937289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sugar sensing by enterocytes combines polarity, membrane bound detectors and sugar metabolism.
    Le Gall M; Tobin V; Stolarczyk E; Dalet V; Leturque A; Brot-Laroche E
    J Cell Physiol; 2007 Dec; 213(3):834-43. PubMed ID: 17786952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of GLUT5, GLUT2 and intestinal brush-border fructose absorption by the extracellular signal-regulated kinase, p38 mitogen-activated kinase and phosphatidylinositol 3-kinase intracellular signalling pathways: implications for adaptation to diabetes.
    Helliwell PA; Richardson M; Affleck J; Kellett GL
    Biochem J; 2000 Aug; 350 Pt 1(Pt 1):163-9. PubMed ID: 10926840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulation of fructose transport across the intestinal brush-border membrane by PMA is mediated by GLUT2 and dynamically regulated by protein kinase C.
    Helliwell PA; Richardson M; Affleck J; Kellett GL
    Biochem J; 2000 Aug; 350 Pt 1(Pt 1):149-54. PubMed ID: 10926838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental changes and fructose absorption in children: effect on malabsorption testing and dietary management.
    Jones HF; Butler RN; Moore DJ; Brooks DA
    Nutr Rev; 2013 May; 71(5):300-9. PubMed ID: 23590706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transepithelial D-glucose and D-fructose transport across the American lobster, Homarus americanus, intestine.
    Obi IE; Sterling KM; Ahearn GA
    J Exp Biol; 2011 Jul; 214(Pt 14):2337-44. PubMed ID: 21697425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diet-induced epigenetic regulation in vivo of the intestinal fructose transporter Glut5 during development of rat small intestine.
    Suzuki T; Douard V; Mochizuki K; Goda T; Ferraris RP
    Biochem J; 2011 Apr; 435(1):43-53. PubMed ID: 21222652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular analysis of the fructose transporter gene (GLUT5) in isolated fructose malabsorption.
    Wasserman D; Hoekstra JH; Tolia V; Taylor CJ; Kirschner BS; Takeda J; Bell GI; Taub R; Rand EB
    J Clin Invest; 1996 Nov; 98(10):2398-402. PubMed ID: 8941659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression and function of hexose transporters GLUT1, GLUT2, and GLUT5 in breast cancer-effects of hypoxia.
    Hamann I; Krys D; Glubrecht D; Bouvet V; Marshall A; Vos L; Mackey JR; Wuest M; Wuest F
    FASEB J; 2018 Sep; 32(9):5104-5118. PubMed ID: 29913554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential patterns of inhibition of the sugar transporters GLUT2, GLUT5 and GLUT7 by flavonoids.
    Gauer JS; Tumova S; Lippiat JD; Kerimi A; Williamson G
    Biochem Pharmacol; 2018 Jun; 152():11-20. PubMed ID: 29548810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transepithelial transports of rare sugar D-psicose in human intestine.
    Hishiike T; Ogawa M; Hayakawa S; Nakajima D; O'Charoen S; Ooshima H; Sun Y
    J Agric Food Chem; 2013 Jul; 61(30):7381-6. PubMed ID: 23844903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of fructose transporters in diseases linked to excessive fructose intake.
    Douard V; Ferraris RP
    J Physiol; 2013 Jan; 591(2):401-14. PubMed ID: 23129794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intestinal absorption in health and disease--sugars.
    Wright EM; Martín MG; Turk E
    Best Pract Res Clin Gastroenterol; 2003 Dec; 17(6):943-56. PubMed ID: 14642859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-associated changes in intestinal fructose uptake are not explained by alterations in the abundance of GLUT5 or GLUT2.
    Drozdowski LA; Woudstra TD; Wild GE; Clandinin MT; Thomson AB
    J Nutr Biochem; 2004 Oct; 15(10):630-7. PubMed ID: 15542355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of age on fructose malabsorption in children presenting with gastrointestinal symptoms.
    Jones HF; Burt E; Dowling K; Davidson G; Brooks DA; Butler RN
    J Pediatr Gastroenterol Nutr; 2011 May; 52(5):581-4. PubMed ID: 21502829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intestinal glucose transport: evidence for a membrane traffic-based pathway in humans.
    Santer R; Hillebrand G; Steinmann B; Schaub J
    Gastroenterology; 2003 Jan; 124(1):34-9. PubMed ID: 12512027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Positive regulatory control loop between gut leptin and intestinal GLUT2/GLUT5 transporters links to hepatic metabolic functions in rodents.
    Sakar Y; Nazaret C; Lettéron P; Ait Omar A; Avenati M; Viollet B; Ducroc R; Bado A
    PLoS One; 2009 Nov; 4(11):e7935. PubMed ID: 19956534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fructose intake at current levels in the United States may cause gastrointestinal distress in normal adults.
    Beyer PL; Caviar EM; McCallum RW
    J Am Diet Assoc; 2005 Oct; 105(10):1559-66. PubMed ID: 16183355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of the intestinal glucose transporter GLUT2 by flavonoids.
    Kwon O; Eck P; Chen S; Corpe CP; Lee JH; Kruhlak M; Levine M
    FASEB J; 2007 Feb; 21(2):366-77. PubMed ID: 17172639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.