These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 21148701)

  • 1. Bacterial killing by dry metallic copper surfaces.
    Espírito Santo C; Lam EW; Elowsky CG; Quaranta D; Domaille DW; Chang CJ; Grass G
    Appl Environ Microbiol; 2011 Feb; 77(3):794-802. PubMed ID: 21148701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of contact-mediated killing of yeast cells on dry metallic copper surfaces.
    Quaranta D; Krans T; Espírito Santo C; Elowsky CG; Domaille DW; Chang CJ; Grass G
    Appl Environ Microbiol; 2011 Jan; 77(2):416-26. PubMed ID: 21097600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and characterization of bacteria resistant to metallic copper surfaces.
    Santo CE; Morais PV; Grass G
    Appl Environ Microbiol; 2010 Mar; 76(5):1341-8. PubMed ID: 20048058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane lipid peroxidation in copper alloy-mediated contact killing of Escherichia coli.
    Hong R; Kang TY; Michels CA; Gadura N
    Appl Environ Microbiol; 2012 Mar; 78(6):1776-84. PubMed ID: 22247141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metallic copper corrosion rates, moisture content, and growth medium influence survival of copper ion-resistant bacteria.
    Elguindi J; Moffitt S; Hasman H; Andrade C; Raghavan S; Rensing C
    Appl Microbiol Biotechnol; 2011 Mar; 89(6):1963-70. PubMed ID: 21085951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper Reduction and Contact Killing of Bacteria by Iron Surfaces.
    Mathews S; Kumar R; Solioz M
    Appl Environ Microbiol; 2015 Sep; 81(18):6399-403. PubMed ID: 26150470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of copper ion resistance to survival of Escherichia coli on metallic copper surfaces.
    Espírito Santo C; Taudte N; Nies DH; Grass G
    Appl Environ Microbiol; 2008 Feb; 74(4):977-86. PubMed ID: 18156321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pure and Oxidized Copper Materials as Potential Antimicrobial Surfaces for Spaceflight Activities.
    Hahn C; Hans M; Hein C; Mancinelli RL; Mücklich F; Wirth R; Rettberg P; Hellweg CE; Moeller R
    Astrobiology; 2017 Dec; 17(12):1183-1191. PubMed ID: 29116818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface structure influences contact killing of bacteria by copper.
    Zeiger M; Solioz M; Edongué H; Arzt E; Schneider AS
    Microbiologyopen; 2014 Jun; 3(3):327-32. PubMed ID: 24740976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Susceptibility of opportunistic Burkholderia glumae to copper surfaces following wet or dry surface contact.
    Cui Z; Ibrahim M; Yang C; Fang Y; Annam H; Li B; Wang Y; Xie GL; Sun G
    Molecules; 2014 Jul; 19(7):9975-85. PubMed ID: 25010469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative proteomic profiling of the Escherichia coli response to metallic copper surfaces.
    Nandakumar R; Espirito Santo C; Madayiputhiya N; Grass G
    Biometals; 2011 Jun; 24(3):429-44. PubMed ID: 21384090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Survival of bacteria on metallic copper surfaces in a hospital trial.
    Mikolay A; Huggett S; Tikana L; Grass G; Braun J; Nies DH
    Appl Microbiol Biotechnol; 2010 Aug; 87(5):1875-9. PubMed ID: 20449737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Killing of bacteria by copper, cadmium, and silver surfaces reveals relevant physicochemical parameters.
    Luo J; Hein C; Mücklich F; Solioz M
    Biointerphases; 2017 Apr; 12(2):020301. PubMed ID: 28407716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the antimicrobial activity behind thin- and thick-rolled copper plates.
    Yousuf B; Ahire JJ; Dicks LM
    Appl Microbiol Biotechnol; 2016 Jun; 100(12):5569-80. PubMed ID: 26860943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prevalence of Monovalent Copper Over Divalent in Killing Escherichia coli and Staphylococcus aureus.
    Saphier M; Silberstein E; Shotland Y; Popov S; Saphier O
    Curr Microbiol; 2018 Apr; 75(4):426-430. PubMed ID: 29260302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contact killing of bacteria on copper is suppressed if bacterial-metal contact is prevented and is induced on iron by copper ions.
    Mathews S; Hans M; Mücklich F; Solioz M
    Appl Environ Microbiol; 2013 Apr; 79(8):2605-11. PubMed ID: 23396344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutant Strains of Escherichia coli and Methicillin-Resistant Staphylococcus aureus Obtained by Laboratory Selection To Survive on Metallic Copper Surfaces.
    Bleichert P; Bütof L; Rückert C; Herzberg M; Francisco R; Morais PV; Grass G; Kalinowski J; Nies DH
    Appl Environ Microbiol; 2020 Dec; 87(1):. PubMed ID: 33067196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of copper surface toxicity in Escherichia coli O157:H7 and Salmonella involves immediate membrane depolarization followed by slower rate of DNA destruction which differs from that observed for Gram-positive bacteria.
    Warnes SL; Caves V; Keevil CW
    Environ Microbiol; 2012 Jul; 14(7):1730-43. PubMed ID: 22176893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Survival of Escherichia coli cells on solid copper surfaces is increased by glutathione.
    Große C; Schleuder G; Schmole C; Nies DH
    Appl Environ Microbiol; 2014 Nov; 80(22):7071-8. PubMed ID: 25192999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antimicrobial metallic copper surfaces kill Staphylococcus haemolyticus via membrane damage.
    Santo CE; Quaranta D; Grass G
    Microbiologyopen; 2012 Mar; 1(1):46-52. PubMed ID: 22950011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.