BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 21149007)

  • 1. Mycorrhizal morphology of Monotropastrum humile collected from six different forests in central Japan.
    Matsuda Y; Yamada A
    Mycologia; 2003; 95(6):993-7. PubMed ID: 21149007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mycorrhizal fungi associated with Monotropastrum humile (Ericaceae) in central Japan.
    Matsuda Y; Okochi S; Katayama T; Yamada A; Ito SI
    Mycorrhiza; 2011 Aug; 21(6):569-576. PubMed ID: 21336506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular identification of the mycorrhizal fungi of the epiparasitic plant Monotropastrum humile var. glaberrimum (Ericaceae).
    Yokoyama J; Fukuda T; Tsukaya H
    J Plant Res; 2005 Feb; 118(1):53-6. PubMed ID: 15650809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring mycorrhizal diversity in sympatric mycoheterotrophic plants: a comparative study of Monotropastrum humile var. humile and M. humile var. glaberrimum.
    Liu RC; Lin WR; Wang PH
    Mycorrhiza; 2024 Jun; ():. PubMed ID: 38918244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Taxonomic status of Monotropastrum humile, with special reference to M. humile var. glaberrimum (Ericaceae, Monotropoideae).
    Tsukaya H; Yokoyama J; Imaichi R; Ohba H
    J Plant Res; 2008 May; 121(3):271-8. PubMed ID: 18389172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monotropastrum kirishimense (Ericaceae), a new mycoheterotrophic plant from Japan based on multifaceted evidence.
    Suetsugu K; Hirota SK; Hsu TC; Kurogi S; Imamura A; Suyama Y
    J Plant Res; 2023 Jan; 136(1):3-18. PubMed ID: 36445504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural features of mycorrhizal associations in two members of the Monotropoideae, Monotropa uniflora and Pterospora andromedea.
    Massicotte HB; Melville LH; Peterson RL
    Mycorrhiza; 2005 Mar; 15(2):101-10. PubMed ID: 15490255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patterns in spatial distribution and root trait syndromes for ecto and arbuscular mycorrhizal temperate trees in a mixed broadleaf forest.
    Valverde-Barrantes OJ; Smemo KA; Feinstein LM; Kershner MW; Blackwood CB
    Oecologia; 2018 Mar; 186(3):731-741. PubMed ID: 29243085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ecological responses to forest age, habitat, and host vary by mycorrhizal type in boreal peatlands.
    Kennedy PG; Mielke LA; Nguyen NH
    Mycorrhiza; 2018 Apr; 28(3):315-328. PubMed ID: 29504037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subcellular nutrient element localization and enrichment in ecto- and arbuscular mycorrhizas of field-grown beech and ash trees indicate functional differences.
    Seven J; Polle A
    PLoS One; 2014; 9(12):e114672. PubMed ID: 25486253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mycorrhizal associations and the spatial structure of an old-growth forest community.
    Johnson DJ; Clay K; Phillips RP
    Oecologia; 2018 Jan; 186(1):195-204. PubMed ID: 29086005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microautoradiographic localization of phosphate and carbohydrates in mycorrhizal roots of Populus tremula x Populus alba and the implications for transfer processes in ectomycorrhizal associations.
    Bücking H; Heyser W
    Tree Physiol; 2001 Feb; 21(2-3):101-7. PubMed ID: 11303640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dominant forest tree mycorrhizal type mediates understory plant invasions.
    Jo I; Potter KM; Domke GM; Fei S
    Ecol Lett; 2018 Feb; 21(2):217-224. PubMed ID: 29194909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arbutus menziesii (Ericaceae) facilitates regeneration dynamics in mixed evergreen forests by promoting mycorrhizal fungal diversity and host connectivity.
    Kennedy PG; Smith DP; Horton TR; Molina RJ
    Am J Bot; 2012 Oct; 99(10):1691-701. PubMed ID: 22986083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ and in vitro colonization of Cathaya argyrophylla (Pinaceae) by ectomycorrhizal fungi.
    Vaario LM; Xing ST; Xie ZQ; Lun ZM; Sun X; Li YH
    Mycorrhiza; 2006 Mar; 16(2):137-142. PubMed ID: 16292663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organic and inorganic nitrogen uptake by 21 dominant tree species in temperate and tropical forests.
    Liu M; Li C; Xu X; Wanek W; Jiang N; Wang H; Yang X
    Tree Physiol; 2017 Nov; 37(11):1515-1526. PubMed ID: 28482109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mycorrhizal community in a forest chronosequence of Sitka spruce [Picea sitchensis (Bong.) Carr.] in Northern England.
    Palfner G; Casanova-Katny MA; Read DJ
    Mycorrhiza; 2005 Nov; 15(8):571-579. PubMed ID: 15947957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ectomycorrhizal Fungal Communities in Urban Parks Are Similar to Those in Natural Forests but Shaped by Vegetation and Park Age.
    Hui N; Liu X; Kotze DJ; Jumpponen A; Francini G; Setälä H
    Appl Environ Microbiol; 2017 Dec; 83(23):. PubMed ID: 28970220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mycorrhizal fungal communities respond to experimental elevation of soil pH and P availability in temperate hardwood forests.
    Carrino-Kyker SR; Kluber LA; Petersen SM; Coyle KP; Hewins CR; DeForest JL; Smemo KA; Burke DJ
    FEMS Microbiol Ecol; 2016 Mar; 92(3):. PubMed ID: 26850158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined effects of thinning and decline on fine root dynamics in a Quercus robur L. forest adjoining the Italian Pre-Alps.
    Mosca E; Montecchio L; Barion G; Dal Cortivo C; Vamerali T
    Ann Bot; 2017 May; 119(7):1235-1246. PubMed ID: 28334145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.