These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 2114930)

  • 41. The effect of calcium ions and the calcium ionophore A23187 on choline uptake and phosphatidylcholine biosynthesis in chick embryo hearts.
    Rabkin SW
    Basic Res Cardiol; 1988; 83(6):664-71. PubMed ID: 2851973
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mobilization of intracellular calcium by extracellular ATP and by calcium ionophores in the Ehrlich ascites-tumour cell.
    Artalejo AR; García-Sancho J
    Biochim Biophys Acta; 1988 Jun; 941(1):48-54. PubMed ID: 2453216
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Uptake of adriamycin into large unilamellar vesicles in response to a pH gradient.
    Mayer LD; Bally MB; Cullis PR
    Biochim Biophys Acta; 1986 May; 857(1):123-6. PubMed ID: 3964703
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Organic cation transport by rat liver plasma membrane vesicles: studies with tetraethylammonium.
    Moseley RH; Jarose SM; Permoad P
    Am J Physiol; 1992 Nov; 263(5 Pt 1):G775-85. PubMed ID: 1443152
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Two calcium-activated chloride conductances in Xenopus laevis oocytes permeabilized with the ionophore A23187.
    Boton R; Dascal N; Gillo B; Lass Y
    J Physiol; 1989 Jan; 408():511-34. PubMed ID: 2506341
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Voltage-dependence of Ca2+ uptake and ATP hydrolysis of reconstituted Ca2+-ATPase vesicles.
    Navarro J; Essig A
    Biophys J; 1984 Dec; 46(6):709-17. PubMed ID: 6240285
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ca2+ transport properties of ionophores A23187, ionomycin, and 4-BrA23187 in a well defined model system.
    Erdahl WL; Chapman CJ; Taylor RW; Pfeiffer DR
    Biophys J; 1994 May; 66(5):1678-93. PubMed ID: 8061216
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Stimulation of calcium uptake in platelet membrane vesicles by adenosine 3',5'-cyclic monophosphate and protein kinase.
    Käser-Glanzmann R; Jakäbovä M; George JN; Lüscher EF
    Biochim Biophys Acta; 1977 May; 466(3):429-40. PubMed ID: 192295
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Calcium pool size modulates the sensitivity of the ryanodine receptor channel and calcium-dependent ATPase of heavy sarcoplasmic reticulum to extravesicular free calcium concentration.
    Marie V; Silva JE
    J Cell Physiol; 1998 Jun; 175(3):283-94. PubMed ID: 9572473
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of the calcium ionophore A23187 on pancreatic acinar cell membrane potentials and amylase release.
    Poulsen JH; Williams JA
    J Physiol; 1977 Jan; 264(2):323-39. PubMed ID: 320310
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A role of H+ flux in active Ca2+ transport into sarcoplasmic reticulum vesicles. II. H+ ejection during Ca2+ uptake.
    Ueno T; Sekine T
    J Biochem; 1981 Apr; 89(4):1247-52. PubMed ID: 6265435
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evidence for a Ca2+ gradient across the plasma membrane of wheat protoplasts.
    Akerman KE; Proudlove MO; Moore AL
    Biochem Biophys Res Commun; 1983 May; 113(1):171-7. PubMed ID: 6407477
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Pathways of arachidonic acid liberation in thrombin and calcium ionophore A23187-stimulated human endothelial cells: respective roles of phospholipids and triacylglycerol and evidence for diacylglycerol generation from phosphatidylcholine.
    Ragab-Thomas JM; Hullin F; Chap H; Douste-Blazy L
    Biochim Biophys Acta; 1987 Feb; 917(3):388-97. PubMed ID: 3099849
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A23187 increases calcium permeability of store sites more than of surface membranes in the rabbit mesenteric artery.
    Itoh T; Kanmura Y; Kuriyama H
    J Physiol; 1985 Feb; 359():467-84. PubMed ID: 3923186
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Changes in intravesicular pH during Ca2+ transport in the sarcoplasmic reticulum].
    Kurskiĭ MD; Tugaĭ VA; Usatiuk PV
    Ukr Biokhim Zh (1978); 1986; 58(1):56-62. PubMed ID: 3946018
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sodium-calcium ion exchange in cardiac membrane vesicles.
    Reeves JP; Sutko JL
    Proc Natl Acad Sci U S A; 1979 Feb; 76(2):590-4. PubMed ID: 284383
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Participation of the microtubular-microfilamentous system on intracellular Ca2+ transport and acid secretion in dispersed parietal cells.
    Tsunoda Y; Mizuno T
    Biochim Biophys Acta; 1985 Nov; 820(2):189-98. PubMed ID: 3931680
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Preparation and characterization of liposomes containing the Ca2+-activated photoprotein, obelin.
    Dormer RL; Newman GR; Campbell AK
    Biochim Biophys Acta; 1978 Jan; 538(1):87-105. PubMed ID: 339958
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effects of calcium ions, ionophore A23187 and inhibition of energy metabolism on protein degradation in the rat diaphragm and epitrochlearis muscles in vitro.
    Sugden PH
    Biochem J; 1980 Sep; 190(3):593-603. PubMed ID: 6781483
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Effect of sodium gradient on calcium uptake by plasma membranes of the myometrium].
    Bratkova NF; Kurskii MD; Kosterin SA
    Biokhimiia; 1982 Jun; 47(6):1015-21. PubMed ID: 6810956
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.